對(duì)試驗(yàn)臺(tái)主要零部件進(jìn)行模態(tài)分析,結(jié)果顯示各部件固有頻率遠(yuǎn)離航空發(fā)動(dòng)機(jī)各階臨界轉(zhuǎn)速,說明了試驗(yàn)臺(tái)初步設(shè)計(jì)的合理性;為提高鼠籠彈性支承剛度設(shè)計(jì)的精確性,提出了有效集算法和遺傳算法相結(jié)合的優(yōu)化方法,優(yōu)化后,2#和3#支點(diǎn)鼠籠彈支的設(shè)計(jì)剛度與目標(biāo)值之間的誤差分別為0.3%和0.1%,驗(yàn)證了該方法的高精度和高效率。然后,建立雙轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)簡(jiǎn)化模型,運(yùn)用有限單元法推導(dǎo)系統(tǒng)動(dòng)力學(xué)方程,編寫程序計(jì)算了高低壓轉(zhuǎn)子分別為主激勵(lì)時(shí)系統(tǒng)臨界轉(zhuǎn)速,結(jié)果表明計(jì)算值與航空發(fā)動(dòng)機(jī)實(shí)測(cè)值的誤差遠(yuǎn)超過了允許誤差5%,需后續(xù)優(yōu)化。接著,運(yùn)用變換哈墨斯利算法優(yōu)化系統(tǒng)的臨界轉(zhuǎn)速,對(duì)比優(yōu)化值與航空發(fā)動(dòng)機(jī)實(shí)測(cè)值的誤差,其誤差不超過允許誤差5%,低壓轉(zhuǎn)子結(jié)構(gòu)參數(shù)符合設(shè)計(jì)要求,證明了優(yōu)化方法的可行性。故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)的實(shí)驗(yàn)結(jié)果具有重要意義。上海故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)視頻
.滾動(dòng)軸承是旋轉(zhuǎn)機(jī)械的關(guān)鍵部件,工作在高速,高溫以及高載荷的變工況下,極易發(fā)生故障,因此,對(duì)滾動(dòng)軸承進(jìn)行故障診斷和全壽命預(yù)測(cè)從而實(shí)現(xiàn)故障單期預(yù)警和精確的維修決策,避免故隙引發(fā)的事故BTS100軸承壽命預(yù)測(cè)測(cè)試臺(tái),可以開展軸承壽命加速實(shí)驗(yàn),實(shí)驗(yàn)原理就是在不改變軸承失效機(jī)理,不增加新的失效模式的前提下,通過提高試驗(yàn)軸承應(yīng)力水平的方法來加速其失效進(jìn)程,然后再根據(jù)試驗(yàn)數(shù)據(jù)運(yùn)用數(shù)理統(tǒng)計(jì)理論估算出正常應(yīng)力下軸承的壽命的數(shù)據(jù)。軸承外圈的故障特征信息被噪聲所包圍。用本文所提方法對(duì)軸承外圈故障信號(hào)進(jìn)行分析,多目標(biāo)粒子群優(yōu)化算法(參數(shù)與“4.仿真信號(hào)分析”的設(shè)置相同)優(yōu)化VMD參數(shù)得到的Pareto解集及目標(biāo)值如表2所示。從表2中可以看出,當(dāng)**以信息熵、峭度、相關(guān)系數(shù)其中一個(gè)指標(biāo)評(píng)價(jià)時(shí),參數(shù)組合選擇序號(hào)11時(shí),f3**小,即相關(guān)系數(shù)取得**大值,而其對(duì)應(yīng)的信息熵和峭度既不是較優(yōu)值也不是**差值,一方面說明相關(guān)系數(shù)和峭度以及信息熵之間是沒有***的,另一方面說明如果**以相關(guān)系數(shù)評(píng)價(jià)時(shí),并沒有考慮到軸承故障沖擊性以及與周期性,在此參數(shù)組合下,對(duì)原始信號(hào)進(jìn)行分解轉(zhuǎn)子軸承故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)視頻故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)的實(shí)驗(yàn)環(huán)境需要嚴(yán)格把控。
標(biāo)準(zhǔn)壓電式加速度傳感器三角剪切結(jié)構(gòu),基座應(yīng)變小,溫度瞬態(tài)響應(yīng)低,敏感元件為高穩(wěn)定的特種陶瓷或石英,靈敏度穩(wěn)定性好。傳感器采用兩端 M5 螺孔設(shè)計(jì),便于背對(duì)背標(biāo)定。1.測(cè)量通道數(shù)量:四通道、八通道、十六通道、傳感器同時(shí)數(shù)據(jù)信號(hào)采集。2.支持傳感器類型:壓電式傳感器振動(dòng),噪聲聲級(jí)計(jì),轉(zhuǎn)速計(jì)(*四通道)、電壓型輸出傳感器。3.數(shù)模轉(zhuǎn)換器精度:24AD位。4.支持比較高采樣頻率:比較高100kHz/通道,多種量程范圍可選。5.輸入精度:相位:優(yōu)于0.1度,幅值:優(yōu)于0.1%。6.儀器比較高動(dòng)態(tài)范圍:110dB。
HOJOLO自主開發(fā)的智能在線監(jiān)測(cè)系統(tǒng)平臺(tái),以結(jié)構(gòu)安全和設(shè)備故障預(yù)測(cè)為導(dǎo)向,深度融合了物聯(lián)網(wǎng)、大數(shù)據(jù)、云/邊緣計(jì)算、人工智能以及數(shù)字孿生等先進(jìn)理念,可廣泛應(yīng)用于橋梁、房屋、隧道、邊坡、大壩、港機(jī)、機(jī)械設(shè)備、電力設(shè)施以及武器裝備等結(jié)構(gòu)或設(shè)備的在線監(jiān)測(cè)與健康管理。系統(tǒng)特點(diǎn)結(jié)構(gòu)信息管理支持用戶自定義編輯結(jié)構(gòu)信息,內(nèi)置地理位置地圖,支持導(dǎo)入大部分主流格式的2D圖形或3D實(shí)體模型用于測(cè)點(diǎn)布設(shè)可視化展示狀態(tài)顯示支持自定義大屏展示界面的設(shè)計(jì)與主題管理,豐富的數(shù)據(jù)展示模塊,多維度直觀顯示被監(jiān)測(cè)對(duì)象的實(shí)時(shí)/歷史工作狀態(tài)、報(bào)警等信息測(cè)點(diǎn)設(shè)置支持自定義創(chuàng)建與編輯測(cè)點(diǎn),包括測(cè)點(diǎn)的基本信息、采樣設(shè)置、實(shí)時(shí)分析和存儲(chǔ)設(shè)置等。支持分析點(diǎn)數(shù)以及數(shù)據(jù)稀釋規(guī)則自定義,優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu),合理有效利用服務(wù)器存儲(chǔ)空間故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)的運(yùn)行需要精心維護(hù)。
在機(jī)械設(shè)備運(yùn)行過程中,零部件的運(yùn)動(dòng)產(chǎn)生振動(dòng)和沖擊,包含著豐富的設(shè)備健康運(yùn)行狀態(tài)信息[1-2]。振動(dòng)沖擊往往是由零部件之間的碰撞敲擊產(chǎn)生,其幅值大小、出現(xiàn)位置表現(xiàn)著設(shè)備的健康狀態(tài)。在航空、船舶、石油化工等領(lǐng)域的機(jī)械設(shè)備中,包括航空發(fā)動(dòng)機(jī)、內(nèi)燃機(jī)、齒輪箱、往復(fù)壓縮機(jī)、泵等,沖擊振動(dòng)是常見的故障模式[3-5]。因此,監(jiān)測(cè)機(jī)械振動(dòng)信號(hào)中的沖擊成分可有效反映機(jī)械部件運(yùn)行的健康狀態(tài),對(duì)設(shè)備進(jìn)行故障診斷具有重要的意義。振動(dòng)信號(hào)沖擊成分呈現(xiàn)多頻段分布,并伴隨著噪聲干擾,不同頻率成分的沖擊在時(shí)域混疊等問題[8-9]。以上情況,導(dǎo)致了復(fù)雜機(jī)械設(shè)備的實(shí)際振動(dòng)監(jiān)測(cè)信號(hào)的分析難度,造成了早期故障沖擊特征難以捕捉等問題。更進(jìn)一步地,其中一些往復(fù)機(jī)械(柴油機(jī)、往復(fù)壓縮機(jī)、往復(fù)泵等)的振動(dòng)信號(hào)的沖擊成分在時(shí)域分布上呈現(xiàn)周期性間隔特點(diǎn),與曲軸特定轉(zhuǎn)角對(duì)應(yīng)[10-12],單從回轉(zhuǎn)設(shè)備的頻域分析方法在此并不適應(yīng)。由于實(shí)際振動(dòng)信號(hào)的頻域復(fù)雜性和時(shí)域多沖擊分布特點(diǎn),因此需要對(duì)采集的振動(dòng)沖擊信號(hào)進(jìn)行頻域分解和時(shí)域沖擊的提取,為后續(xù)特征提取和故障診斷奠定基礎(chǔ)。故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)是故障研究的前沿陣地。山東轉(zhuǎn)子軸承故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)
故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)在研究中發(fā)揮著關(guān)鍵作用。上海故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)視頻
沖擊識(shí)別與分解對(duì)柴油機(jī)狀態(tài)特征提取具有重要價(jià)值?,F(xiàn)有常用方法利用沖擊頻域特性,通過頻域分解與重構(gòu)識(shí)別并分解沖擊,在分解復(fù)雜多沖擊非平穩(wěn)信號(hào)存在頻段混疊、時(shí)域沖擊重合等問題。本研究提出了一種變分時(shí)頻聯(lián)合分解(VTFJD)方法,目的在于提取多源沖擊振動(dòng)信號(hào)中沖擊成分。首先采用改進(jìn)變分模態(tài)分解(VMD)方法對(duì)多沖擊振動(dòng)信號(hào)進(jìn)行頻域分解,得到各分解模態(tài)信號(hào);其次,提出了變分時(shí)域分解方法(VTD),用于提取各分解模態(tài)信號(hào)中的沖擊成分;***,對(duì)時(shí)頻聯(lián)合分解信號(hào)進(jìn)行篩選,獲得振動(dòng)波形中多源沖擊成分時(shí)頻域信息。同時(shí),針對(duì)VMD和VTD中參數(shù)選擇問題,分別提出了參數(shù)優(yōu)化選擇方案。仿真信號(hào)和實(shí)際柴油機(jī)連桿軸瓦振動(dòng)信號(hào)特征提取結(jié)果表明,VTFJD具有出色的多沖擊信號(hào)自適應(yīng)時(shí)頻分解能力,具有沖擊自動(dòng)識(shí)別與分解提取能力。關(guān)鍵詞:信號(hào)分解;振動(dòng)與沖擊;柴油機(jī);連桿軸瓦磨損故障上海故障機(jī)理研究模擬實(shí)驗(yàn)臺(tái)視頻