**初的微泡靶向實驗是在靜態(tài)條件下進行的:將氣泡與目標表面接觸(通常是倒置),在沒有流動的情況下孵育幾分鐘,然后將剩余的自由氣泡洗掉,測量保留氣泡的數(shù)量和聲學響應。然而,這種情況并不是脈管系統(tǒng)內真正靶向的良好模型,在脈管系統(tǒng)內,結合發(fā)生時沒有任何流動停止。取決于配體-受體結合和脫離動力學,以及配體和受體的表面密度、血流和壁剪切條件,與靶標的結合可能發(fā)生,也可能不發(fā)生。結合可能是短暫的(幾分之一秒),也可能是長久的(幾秒或幾分鐘),這取決于在初始接觸期間有多少牢固的鍵有機會形成。了解微泡靶向性的比較好方法是在體外受控條件下,以已知的流速、配體和受體密度進行靶向性研究。平行板流室通常用于這些研究。一些配體(如抗體)能夠與目標抗原牢固結合(一旦結合發(fā)生解離抗體和抗原可能需要幾天的時間,但這種結合并不總是很快的。在流動的情況下,顆粒上的配體與受體結合的時間非常有限。在極端情況下(大血管中1米/秒的血流),典型的配體與受體結合位點線性尺寸為1納米時,必須在1納秒內發(fā)生有效結合,這是一個極短的時間,與大多數(shù)抗體-抗原kon動力學常數(shù)不相容。除了靶向成像,超聲微泡造影劑還可用于提供有效載荷。天津超聲微泡
超聲微泡造影劑是一種先進的醫(yī)療技術,具有廣泛的應用前景和巨大的市場潛力。作為一種非侵入性的檢查方法,超聲微泡造影劑在診斷和***方面具有獨特的優(yōu)勢。首先,超聲微泡造影劑具有高度安全性和可靠性。相比其他檢查方法,如CT和MRI,超聲微泡造影劑無需使用放射性物質,避免了患者暴露于輻射的風險。同時,超聲微泡造影劑的成分經(jīng)過嚴格篩選,確保了其在體內的穩(wěn)定性和生物相容性,減少了不良反應的發(fā)生。其次,超聲微泡造影劑具有高分辨率和高靈敏度。超聲波能夠穿透人體組織,通過對超聲波的反射和散射信號進行分析,可以清晰地觀察到血流動力學和組織結構的變化。天津超聲微泡通過超聲微泡誘導空化可以改變血管和細胞膜的通透性。
聲空化是在聲壓場作用下液體中蒸氣泡的形成和坍縮??栈话銡w類為兩種類型,穩(wěn)定空化和慣性空化。當氣泡經(jīng)歷較大的徑向振蕩并劇烈坍縮時,慣性空化會產生寬帶噪聲發(fā)射,從而對組織造成損傷。利用超聲將靶組織附近的載藥回聲脂質體(ELIP)碎片化,有可能在藥物或***效果上產生一個大的時間峰值,而不是依賴于更漸進的被動釋放,因此優(yōu)化超聲參數(shù)很重要。血管細胞暴露于1MHz至1.5MHz脈沖超聲,峰值壓力幅值在2MPa至36MPa之間,會發(fā)生血管滲漏和細胞凋亡,但Kathryn等人驗證了低強度連續(xù)波(CW)超聲(峰值壓力幅值0.49MPa)增強脂質納米泡在離體小鼠主動脈中的傳遞的假設。他們的研究表明,1MHzCW超聲通過形成穩(wěn)定的空化,增加了脂質體納米泡在內皮細胞中的運輸。因此,需要更多的研究來探索超聲參數(shù)范圍的安全性和有效性。
將靶向成像方式與病變定向***相結合,可以確定與積極***反應可能性有關的幾個生物學相關事實。特別令人感興趣的問題是,目標是否存在,藥物是否達到目標,以及預期目標是否真的是正在***的目標。有多種有趣的生物過程適合應用靶向超聲成像來監(jiān)測藥物遞送的療效。我們的研究小組描述了一種對比增強超聲技術,將破壞-補充超聲與亞諧波相位反轉成像相結合,以提高空間分辨率,并區(qū)分對比回波和非蘇回波。在非破壞性成像脈沖期間,聲音以指定頻率從換能器傳輸,而接收函數(shù)則被檢測到原頻率的次諧波頻率。次諧波振蕩是由超聲造影劑而不是周圍組織***產生的,導致血管內造影劑產生大量的次諧波回聲,而周圍組織幾乎沒有信號。生成了血流速度和整體綜合強度的定量參數(shù)圖,并且與金標準技術相比,灌注測量更有利。該技術用于監(jiān)測用抗血管生成藥物***的實驗性**的反應,并確定對***的不同反應水平。微泡表面選擇合適的偶聯(lián)化學和修飾順序取決于配體的類型。
超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法和快速***的過程。與其他成像方式相比,超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法。通常情況下,當分子成像造影劑在體內使用時,它會循環(huán)一段時間,并在靶體內積累得相當緩慢。血液***也是一個漫長的過程。為了針對幾種不同的配體(如上面列出的所有配體)進行成像,必須使用具有不同光譜特征的幾種染料或具有不同發(fā)射能量分布或衰變動力學的放射性同位素進行標記。在超聲對比設置中,我們不能用不同的顏色“涂”微泡。然而,我們可以利用循環(huán)造影劑從血流中快速(在幾分鐘內)***的優(yōu)勢,以及分別通過對心室和靶的超聲波破壞殘余循環(huán)和沉積造影劑的能力。在一小時內,針對幾個目標的分子成像可以**進行,并且可以獲得感興趣組織的完整分子圖譜。超聲照射聯(lián)合納米微泡的生物學效應。天津超聲微泡
微泡的制造通常通過兩種通用技術來進行:分散氣體顆粒的自組裝穩(wěn)定,以及芯萃取的雙乳液制備。天津超聲微泡
幾種類型的配體已被偶聯(lián)到微泡上,包括抗抗體、多肽和維生素。單克隆抗體,特別是免疫球蛋白-v(IgG)家族的單克隆抗體,已***用于靶向細胞表面受體。單克隆抗體用途***,在納摩爾到皮摩爾范圍內具有結合親和力。然而,當來源于小鼠時,它們往往具有免疫原性。用于靶向成像和藥物遞送的抗體生產也往往昂貴且耗時,并且結合活性因批次而異??贵w作為靶向藥物的其他限制包括有限的保質期和溫度敏感性。多肽是較小的分子,具有化學穩(wěn)定性和低免疫原性。近年來組合肽庫方法的發(fā)展迅速推進了多肽作為靶向配體的使用。一類尚未被用于靶向微泡的配體是適體。適配體是基于RNA或dna的配體,具有特殊的親和力和特異性。這些配體是通過指數(shù)富集(SELEX)的配體系統(tǒng)進化過程產生的。因為這個過程是基于化學合成的,所以避免了抗體配體遇到的一些限制。天津超聲微泡