納米微泡的直徑通常在150-500納米之間,是***藥物分布的誘人場(chǎng)景,并且與微泡相比,已證明可以改善**聚集和保留。近年來(lái),納米微泡表現(xiàn)出優(yōu)異的穩(wěn)定性,這增加了它們?cè)诟鞣N生物醫(yī)學(xué)應(yīng)用中的應(yīng)用。納米微泡提供超聲影像的對(duì)比度增強(qiáng),因此具有***的診斷應(yīng)用潛力。此外,它們也被用于藥物、核酸和氣體的傳輸。納米微泡可以被認(rèn)為是另一種提高體內(nèi)運(yùn)送效率的US敏感納米載體。納米微泡它們可以通過(guò)增加的滯留和滲透性效應(yīng)在**組織內(nèi)積累,可以通過(guò)靶向,也可以通過(guò)在其表面附著抗體。與US聯(lián)合使用時(shí),納米微泡可用于改善藥物在靶組織中的選擇性分布。它們可用于US誘導(dǎo)的聲納穿孔,作為***性空化核,誘導(dǎo)細(xì)胞膜形成暫時(shí)性的孔,以改變細(xì)胞的通透性。因此,納米微泡可以與藥物一起使用,或者藥物可以并入納米微泡殼內(nèi),作為US介導(dǎo)的貨物來(lái)促進(jìn)產(chǎn)品在細(xì)胞內(nèi)的攝取。微泡的慣性空化和破壞產(chǎn)生強(qiáng)大機(jī)械應(yīng)力增強(qiáng)周圍組織的滲透性并進(jìn)一步增加藥物從血液外滲到細(xì)胞質(zhì)或間質(zhì)中。河南肝臟靶向超聲微泡
超聲微泡造影劑的微小氣泡能夠增強(qiáng)超聲信號(hào),提高圖像的對(duì)比度和分辨率,從而更準(zhǔn)確地診斷疾病。此外,超聲微泡造影劑具有多種臨床應(yīng)用。它可以用于心臟、肝臟、腎臟等***的血流動(dòng)力學(xué)檢查,幫助醫(yī)生評(píng)估***功能和病變情況。在**診斷和***中,超聲微泡造影劑可以用于觀察**的血供情況,指導(dǎo)手術(shù)和放療方案的制定。此外,超聲微泡造影劑還可以用于血栓溶解、藥物傳遞等***領(lǐng)域,為患者提供更加個(gè)性化和精細(xì)的***方案??傊曃⑴菰煊皠┳鳛橐环N先進(jìn)的醫(yī)療技術(shù),具有安全、高分辨率和多種臨床應(yīng)用的優(yōu)勢(shì)。在未來(lái)的發(fā)展中,超聲微泡造影劑有望在醫(yī)學(xué)領(lǐng)域發(fā)揮更大的作用,為患者提供更好的診斷和***方案。河南肝臟靶向超聲微泡通過(guò)超聲微泡誘導(dǎo)空化可以改變血管和細(xì)胞膜的通透性。
隨著微泡造影劑的加入超聲對(duì)***大小的血管和非常低的流速變得敏感,同時(shí)保持了傳統(tǒng)b型成像檢測(cè)形態(tài)信息的能力。由于它們具有高度可壓縮性并導(dǎo)致超聲的強(qiáng)散射,因此微泡在超聲圖像上顯得非常明亮。當(dāng)失音時(shí),這些介質(zhì)的膨脹和收縮導(dǎo)致非線性信號(hào)的產(chǎn)生。功率多普勒成像涉及一系列超聲脈沖的傳輸和接收,其中脈沖之間的散射體運(yùn)動(dòng)用于檢測(cè)血流。功率多普勒與超聲造影劑相結(jié)合可提高小血管的檢出率。在人類乳腺腫塊的二維和三維功率多普勒超聲檢查中發(fā)現(xiàn),組織邏輯微血管密度(MVD)與**內(nèi)血管數(shù)量之間存在很強(qiáng)的相關(guān)性。另一項(xiàng)研究利用**中增強(qiáng)像元與總像元的比例來(lái)跟蹤小鼠異種移植**的抗血管生成***。與對(duì)照組相比,***組的信號(hào)像元率***降低,并與MVD相關(guān)。已經(jīng)描述了各種其他方法來(lái)增強(qiáng)非線性造影劑回波并抑制周圍組織產(chǎn)生的回波。諧波成像是一大類技術(shù),它們具有以一個(gè)頻率發(fā)送入射光束并以入射光束的諧波(整數(shù)倍)偵聽(tīng)返**聲的共同特征。雖然諧波成像是一種有用的技術(shù),但它也有局限性。**重要的是,由于固有的根據(jù)該技術(shù)的特性通常必須在圖像對(duì)比度和空間分辨率之間做出妥協(xié)。此外,由于非線性聲音傳播,組織也會(huì)產(chǎn)生非線性回聲,從而降低對(duì)比度分辨率。
**組織中的生物學(xué)改變對(duì)納米微泡的效率起著至關(guān)重要的作用。正常組織微血管內(nèi)皮間隙致密,內(nèi)皮細(xì)胞結(jié)構(gòu)完整,而實(shí)體瘤組織新生血管內(nèi)皮孔在380 ~ 780 nm之間,內(nèi)皮細(xì)胞結(jié)構(gòu)完整性較差。因此,與正常組織相比,一定大小的分子或顆粒更傾向于在**組織中聚集。這種現(xiàn)象被稱為EPR (enhanced permeability and retention)效應(yīng),被認(rèn)為是完成**組織被動(dòng)靶向***的機(jī)制。在臨床前試驗(yàn)中,與傳統(tǒng)化療相比,基于EPR的藥物或基因遞送靶向系統(tǒng)在***功效方面取得了顯著進(jìn)展。在過(guò)去的幾年里,各種基于EPR效應(yīng)的納米材料已經(jīng)被應(yīng)用,其中納米級(jí)納米氣泡的大小可以根據(jù)**血管中孔隙的大小而改變。鑒于不同類型**的內(nèi)皮細(xì)胞中存在不同的間隙大小,因此必須根據(jù)**的類別建立合適尺寸的納米材料。同樣,納米顆粒到達(dá)血液循環(huán)系統(tǒng)時(shí),生物屏障所產(chǎn)生的阻礙也需要高度重視。因此,考慮到這些挑戰(zhàn),為了更好地利用納米材料遞送中的EPR效應(yīng),設(shè)計(jì)了各種處理方法?;贓PR的納米顆粒靶向策略主要致力于調(diào)整藥物或載體的大小和/或利用配體連接涉及EPR效應(yīng)的分子。通過(guò)將靶向指定表面標(biāo)記物的配體附著在載藥微泡的外部,可以實(shí)現(xiàn)更特異性的藥物遞送。
超聲微泡造影劑在******中應(yīng)用。***的**早指標(biāo)之一是單核細(xì)胞與內(nèi)皮細(xì)胞的***和附著。這是由白細(xì)胞粘附分子(lam)如細(xì)胞間粘附分子-1(ICAM-1)的上調(diào)介導(dǎo)的。1997年,用于常規(guī)心肌超聲造影的帶有白蛋白殼的超聲造影劑在某些病理?xiàng)l件下通過(guò)心肌的轉(zhuǎn)運(yùn)時(shí)間較慢。在體外實(shí)驗(yàn)中,這些微泡優(yōu)先粘附在表達(dá)lam的內(nèi)皮細(xì)胞上。隨后,含有針對(duì)ICAM-1的單克隆抗體的超聲造影劑在體外和體內(nèi)均顯示出良好的結(jié)合效率。Villanueva等人和其他人描述了使用微泡對(duì)炎癥進(jìn)行主動(dòng)靶向,其中在炎癥反應(yīng)期間***的內(nèi)皮細(xì)胞使用微泡進(jìn)行靶向。Takalkar等人使用平行板流室來(lái)測(cè)定抗icam-1靶向的微泡對(duì)白細(xì)胞介素-1人工***的內(nèi)皮細(xì)胞的粘附性。增加了40倍與非靶向?qū)φ障啾?,靶向微泡發(fā)生了微泡粘附。微泡以高達(dá)100s-1的剪切速率粘附,這是較大小靜脈的特征。其他白細(xì)胞粘附分子在炎癥和缺血-再灌注損傷中上調(diào)。特別有趣的是p-選擇素,它已被超聲造影劑靶向炎癥小鼠模型。Rychak等人**近證明了可變形微泡與p-選擇素的靶向粘附。聲空化是在聲壓場(chǎng)作用下液體中蒸氣泡的形成和坍縮。河南肝臟靶向超聲微泡
遞送水平的藥物或基因遞送尚未證明靜脈注射與臨床相關(guān)濃度的微泡。河南肝臟靶向超聲微泡
遞送***水平的藥物或***性基因遞送尚未證明靜脈注射與臨床相關(guān)濃度的微泡。大鼠心臟基因轉(zhuǎn)染使用1毫升靜脈注射超聲造影劑,濃度約為1×109微泡/ml。將***性基因有效遞送到大鼠胰腺的方法是,在外殼內(nèi)注射1毫升含有該基因的微泡,注射濃度為5×109微泡/ml。這些研究使用的劑量遠(yuǎn)遠(yuǎn)大于推薦用于人體成像的劑量。能夠通過(guò)小劑量靜脈注射微泡成功轉(zhuǎn)染的微泡劑的開(kāi)發(fā)對(duì)未來(lái)的轉(zhuǎn)化非常重要研究。然而,目前尚不清楚,是由于微泡的有效載荷能力較低而需要高濃度,還是超聲波應(yīng)用時(shí)需要高濃度的氣泡。或者,可以考慮在肌肉或動(dòng)脈內(nèi)注射高濃度微泡以實(shí)現(xiàn)局部藥物或基因遞送的介入性技術(shù)。在小型臨床前研究中,肌內(nèi)注射微泡和質(zhì)粒可產(chǎn)生一致的局部轉(zhuǎn)染。將質(zhì)粒DNA和微泡共同注入腎動(dòng)脈,結(jié)合瞬時(shí)血管壓迫和超聲,已被證明可在腎臟中產(chǎn)生局部基因表達(dá)。將質(zhì)粒DNA和微泡共同注射到腦脊液中,再加上超聲波,產(chǎn)生了DNA轉(zhuǎn)移到大鼠***系統(tǒng)。Tsunoda等人表明,與通過(guò)尾靜脈注射相比,向左心室局部注射微泡和質(zhì)粒DNA后,報(bào)告基因轉(zhuǎn)染到心臟的數(shù)量增加了一個(gè)數(shù)量級(jí)。 河南肝臟靶向超聲微泡