大模型賦能下的智能客服雖然已經(jīng)在很多行業(yè)得以應(yīng)用,但這四個(gè)基本的應(yīng)用功能不會(huì)變,主要有以下四個(gè)方面: 1、讓企業(yè)客服與客戶在各個(gè)觸點(diǎn)進(jìn)行連接智能客服要實(shí)現(xiàn)的,就是幫助企業(yè)在移動(dòng)互聯(lián)網(wǎng)時(shí)代的眾多渠道部署客服入口,讓消費(fèi)者能夠隨時(shí)隨地發(fā)起溝通,并能夠?qū)Ω髑罆?huì)話進(jìn)行整合,便于客服人員的統(tǒng)一管理,即使在海量訪問的高并發(fā)期間,也能將消息高質(zhì)量觸達(dá)。 2、智能知識(shí)庫賦能AI機(jī)器人或人工客服應(yīng)答知識(shí)庫是智能客服系統(tǒng)的會(huì)話支撐,對(duì)于一般的應(yīng)答型溝通,AI機(jī)器人的自動(dòng)應(yīng)答率已經(jīng)達(dá)到80%~90%,極大解放傳統(tǒng)呼叫中心的客服壓力。而對(duì)于人工客服來說,通過知識(shí)庫來掌握訪客信息、提升溝通技術(shù)...
大模型訓(xùn)練過程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的: 1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來存儲(chǔ)和處理,增加了訓(xùn)練過程的復(fù)雜性和成本。 2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過程變得更為復(fù)雜和昂貴。 3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇?..
國(guó)內(nèi)有幾個(gè)在大型模型研究和應(yīng)用方面表現(xiàn)出色的機(jī)構(gòu)和公司主要有以下幾家,他們?cè)谕苿?dòng)人工智能和自然語言處理領(lǐng)域的發(fā)展,為國(guó)內(nèi)的大模型研究和應(yīng)用做出了重要貢獻(xiàn)。 1、百度:百度在自然語言處理領(lǐng)域進(jìn)行了深入研究,并開發(fā)了一系列大模型。其中,ERNIE(EnhancedRepresentationthroughkNowledgeIntEgration)是由百度開發(fā)的基于Transformer結(jié)構(gòu)的預(yù)訓(xùn)練語言模型,取得了很好的性能,尤其在中文任務(wù)上表現(xiàn)出色。 2、華為:華為在自然語言處理和機(jī)器學(xué)習(xí)領(lǐng)域也有突破性的研究成果。例如,華為開發(fā)了DeBERTa(Decoding-enhan...
杭州音視貝科技公司研發(fā)的大模型知識(shí)庫系統(tǒng)產(chǎn)品,主要有以下幾個(gè)方面的功能: 1、知識(shí)標(biāo)簽:從業(yè)務(wù)和管理的角度對(duì)知識(shí)進(jìn)行標(biāo)注,文檔在采集過程中會(huì)自動(dòng)生成該文檔的基本屬性,例如:分類、編號(hào)、名稱、日期等,支持自定義; 2、知識(shí)檢索:支持通過關(guān)鍵字對(duì)文檔標(biāo)題或內(nèi)容進(jìn)行檢索; 3、知識(shí)推送:將更新的知識(shí)庫內(nèi)容主動(dòng)推送給相關(guān)人員; 4、知識(shí)回答:支持在線提問可先在知識(shí)庫中進(jìn)行匹配,匹配失敗或不滿意時(shí)可通過提示,轉(zhuǎn)接至互聯(lián)網(wǎng)中進(jìn)行二次匹配; 5、知識(shí)權(quán)限:支持根據(jù)不同的崗位設(shè)置不同的知識(shí)提取權(quán)限,管理員可進(jìn)行相關(guān)知識(shí)庫的維護(hù)和更新。 大模型能夠在多輪對(duì)話的基礎(chǔ)上進(jìn)行更復(fù)雜的...
大模型訓(xùn)練過程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的: 1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來存儲(chǔ)和處理,增加了訓(xùn)練過程的復(fù)雜性和成本。 2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過程變得更為復(fù)雜和昂貴。 3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇?..
人工智能大模型的發(fā)展,會(huì)給我們的生活帶來哪些改變呢? 其一,引發(fā)計(jì)算機(jī)算力的革新。大模型參數(shù)量的增加導(dǎo)致訓(xùn)練過程的計(jì)算需求呈現(xiàn)指數(shù)級(jí)增長(zhǎng),高性能計(jì)算機(jī)和分布式計(jì)算平臺(tái)的普及,將成為支持更大規(guī)模的模型訓(xùn)練和迭代的重要方式。 其二,將引發(fā)人工智能多模態(tài)、多場(chǎng)景的革新。大模型利用多模態(tài)數(shù)據(jù)進(jìn)行跨模態(tài)學(xué)習(xí),從而提升其在多個(gè)感知任務(wù)上的性能和表現(xiàn)。 其三,通過結(jié)合多模態(tài)數(shù)據(jù)和智能算法,大模型能夠賦能多個(gè)行業(yè),為行業(yè)提質(zhì)增效提供助力,推動(dòng)數(shù)據(jù)與實(shí)體的融合,改變行業(yè)發(fā)展格局。在法律領(lǐng)域,大模型可以作為智能合同生成器,根據(jù)用戶的需求和規(guī)范,自動(dòng)生成合法和合理的合同文本;在娛樂領(lǐng)域...
對(duì)商家而言,大模型切合實(shí)際的應(yīng)用場(chǎng)景莫過于電商行業(yè)。首先是客服領(lǐng)域。隨著電商行業(yè)發(fā)展,消費(fèi)者對(duì)服務(wù)質(zhì)量的要求日益提高,客服的作用也越來越突出。商家為了節(jié)約經(jīng)營(yíng)成本,會(huì)采用人機(jī)結(jié)合的模式,先用智能客服回答一部分簡(jiǎn)單的問題,機(jī)器人解決不了的再靠人工客服解決。想法是好的,但目前各大平臺(tái)的智能客服往往只能根據(jù)關(guān)鍵詞給出預(yù)設(shè)好的答案,無法真正理解消費(fèi)者的問題,人工客服的壓力依然很大。其次是營(yíng)銷獲客領(lǐng)域。直播帶貨的普及讓“人找貨”變成了“貨找人”。平臺(tái)利用大模型的人工智能算法實(shí)現(xiàn)海量數(shù)據(jù)集的深度學(xué)習(xí),分析消費(fèi)者的行為,預(yù)測(cè)哪些產(chǎn)品可能會(huì)吸引消費(fèi)者點(diǎn)擊購(gòu)買,從而為他們推薦商品。這種精細(xì)營(yíng)銷,一方面平...