氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實(shí)際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機(jī)理需要進(jìn)一步的研究。***,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)...
石墨烯可與多種傳統(tǒng)半導(dǎo)體材料形成異質(zhì)結(jié),如硅[64][65][66],鍺[67],氧化鋅[68],硫化鎘[69]、二硫化鉬[70]等。其中,石墨烯/硅異質(zhì)結(jié)器件是目前研究**為***、光電轉(zhuǎn)換效率比較高(AM1.5)的一類光電器件?;诠?石墨烯異質(zhì)結(jié)光電探測器(SGPD),獲得了極高的光伏響應(yīng)[71]。相比于光電流響應(yīng),它不會因產(chǎn)生焦耳熱而產(chǎn)生損耗?;诨瘜W(xué)氣象沉積法(CVD)生長的石墨烯光電探測器有很多其獨(dú)特的優(yōu)點(diǎn)。首先有極高的光伏響應(yīng),其次有極小的等效噪聲功率可以探測極微弱的信號,常見的硅-石墨烯異質(zhì)結(jié)光電探測器結(jié)構(gòu)如圖9.8所示。石墨烯微片的缺陷有時使其無法滿足某些復(fù)合材料在抗靜電或?qū)?..
所采用的石墨原料片徑大小、純度高低等以及合成GO的方法不同,因此導(dǎo)致所合成出來的GO片的大小、片層厚度、氧化程度(含氧量)、表面電荷和表面所帶官能團(tuán)等不同。GO的生物毒性除了有濃度依賴性,還會因GO原料的不同而呈現(xiàn)出毒性數(shù)據(jù)的多樣性,甚至結(jié)論相互矛盾[2-9]。此外,GO可能與毒性測試中的試劑相互作用,從而影響細(xì)胞活性試驗(yàn)數(shù)據(jù)的有效性,使其產(chǎn)生假陽性結(jié)果。如:Macosko與其合作者[10]的研究發(fā)現(xiàn),在細(xì)胞活性試驗(yàn)中利用四甲基偶氮唑鹽(MTT)試劑與GO作用,GO的存在可以減少藍(lán)色產(chǎn)物的形成。因?yàn)樵诨罴?xì)胞中,當(dāng)MTT減少時就說明有同一種顏色產(chǎn)物的生成。因此,基于MTT法試驗(yàn)未能體現(xiàn)出GO的細(xì)...
GO在生理學(xué)環(huán)境下容易發(fā)生聚**影響其負(fù)載藥物的能力,因此需要對GO進(jìn)行功能化修飾來解決其容易團(tuán)聚的問題。目前功能化修飾主要有以下幾種:(1)共價鍵修飾,由于GO表面豐富的含氧官能團(tuán)(羥基、羧基、環(huán)氧基),可與多種親水性大分子通過酯鍵、酰胺鍵等共價鍵連接完成功能化,改善其穩(wěn)定性、生物相容性等。常見的大分子有聚乙二醇(PEG)、聚賴氨酸、聚丙烯(PAA)和聚醚酰亞胺(PEI)等;(2)非共價鍵修飾[22-24],GO片層內(nèi)碳原子共同形成一個大的π鍵,能夠通過非共價π-π作用與芳香類化合物相互結(jié)合,不同種類的生物分子也可以通過氫鍵作用、范德華力和疏水作用等非共價作用力與GO結(jié)構(gòu)中的SP2雜化部分結(jié)...
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾,同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進(jìn)行加工。另外,GO具有獨(dú)特的電子結(jié)構(gòu)性能,可以通過熒光能量共振轉(zhuǎn)移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點(diǎn)及上轉(zhuǎn)換納米材料)的熒光。這些特點(diǎn)都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點(diǎn)作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對CdSe/ZnS量子點(diǎn)的熒光淬滅效率分別為66±17%、74±7%、7...
使得*在單層中排列的水蒸氣可以滲透通過納米通道。通過在GO納米片之間夾入適當(dāng)尺寸的間隔物來調(diào)節(jié)GO間距,可以制造廣譜的GO膜,每個膜能夠精確地分離特定尺寸范圍內(nèi)的目標(biāo)離子和分子。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3nm,真正有效、可自由通過的孔道尺寸為0.9nm,計(jì)算出水合半徑小于0.45nm的物質(zhì)可以通過氧化石墨烯膜片,而水合半徑大于0.45nm的物質(zhì)被截留,如圖8.4所示。例如,脫鹽要求GO的層間距小于0.7nm,以從水中篩分水合Na+(水合半徑為0.36nm)。通過部分還原GO以減小水合官能團(tuán)的尺寸或通過將堆疊的GO納米片與小尺寸分子共價鍵合以克服水合力,可以獲得這種...
與石墨烯量子點(diǎn)類似,氧化石墨烯量子點(diǎn)也具備一些特殊的性質(zhì)。當(dāng)GO片徑達(dá)到若干納米量級的時候?qū)霈F(xiàn)明顯的限域效應(yīng),其光學(xué)性質(zhì)會隨著片徑尺寸大小發(fā)生變化[48],當(dāng)超過某上限后氧化石墨烯量子點(diǎn)的性質(zhì)相當(dāng)接近氧化石墨烯,這就提供了一種通過控制片徑尺寸分布改變氧化石墨烯量子點(diǎn)光響應(yīng)的手段。與GO類似,這種pH依賴來源于自由型zigzag邊緣的質(zhì)子化或者去質(zhì)子化。同樣,這也可以解釋以GO為前驅(qū)體通過超聲-水熱法得到的石墨烯量子點(diǎn)的光發(fā)射性能,在藍(lán)光區(qū)域其光發(fā)射性能取決于zigzag邊緣狀態(tài),而綠色的熒光發(fā)射則來自于能級陷阱的無序狀態(tài)。通過控制氧化石墨烯量子點(diǎn)的氧化程度,可以控制其發(fā)光的波長。這一類量子...
氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實(shí)際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機(jī)理需要進(jìn)一步的研究。***,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)...
氧化石墨烯(GO)表面有羥基、羧基、環(huán)氧基、羰基等親水性的活性基團(tuán),且片層間距較大,使得氧化石墨烯具有超大比表面積和***的離子交換能力。GO的結(jié)構(gòu)與水通蛋白相類似,而蛋白質(zhì)本身具有優(yōu)異的離子識別功能,由此可推斷氧化石墨烯在分離、過濾及仿生離子傳輸?shù)阮I(lǐng)域可能具有潛在的應(yīng)用價值1-3。GO經(jīng)過超聲可以穩(wěn)定地分散在水中,再通過傳統(tǒng)成膜方法如旋涂、滴涂和真空抽濾等處理后,GO微片可呈現(xiàn)肉眼可見的層狀薄膜堆疊,在薄膜的層與層之間形成具有選擇性的二維納米通道。除此之外,GO由于片層間存在較強(qiáng)的氫鍵,力學(xué)性能優(yōu)異,易脫離基底而**存在?;贕O薄膜制備方法簡單、成本低、高通透性和高選擇性等優(yōu)點(diǎn),其在水凈化...
太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像、反恐安全檢查、通信雷達(dá)、射電天文等領(lǐng)域,將對技術(shù)創(chuàng)新、國民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,美國**將THz科技評為“改變未來世界的**技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱**重點(diǎn)戰(zhàn)略目標(biāo)”**,舉全國之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流、光電導(dǎo)天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器、光學(xué)混頻、加速電子、光參量轉(zhuǎn)換等方法產(chǎn)生。石墨烯以優(yōu)異的聲、光、熱、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo)。附近氧化石墨粉體氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大...
GO作為新型的二維結(jié)構(gòu)的納米材料,具有疏水性中間片層與親水性邊緣結(jié)構(gòu),特殊的結(jié)構(gòu)決定其優(yōu)異的***特性。GO的***活性主要有以下幾種機(jī)制:(1)機(jī)械破壞,包括物理穿刺或者切割;(2)氧化應(yīng)激引發(fā)的細(xì)菌/膜物質(zhì)破壞;(3)包覆導(dǎo)致的跨膜運(yùn)輸阻滯和(或)細(xì)菌生長阻遏;(4)磷脂分子抽提理論。GO作用于細(xì)菌膜表面的殺菌機(jī)制中,主要是GO與起始分子反應(yīng)(MolecularInitiatingEvents,MIEs)[51]的作用(圖7.3),包括GO表面活性引發(fā)的磷脂過氧化,GO片層結(jié)構(gòu)對細(xì)菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引發(fā)的活性自由基等。另外,GO的尺寸在上述不同的***機(jī)制中對...
氧化石墨烯表面的-OH和-COOH等官能團(tuán)含有孤對電子,可作為配位體與具有空的價電子軌道的金屬離子發(fā)生絡(luò)合反應(yīng),生成不溶于水的絡(luò)合物,從而有效去除溶液中的金屬離子。Madadrang等45制得乙二胺四乙酸/氧化石墨烯復(fù)合材料(EDTA-GO),通過研究發(fā)現(xiàn)其對金屬離子的吸附機(jī)制主要為絡(luò)合反應(yīng),即氧化石墨烯的表面官能團(tuán)與水中的金屬離子反應(yīng)形成復(fù)雜的絡(luò)合物,具體過程如圖8.7所示,由于形成的絡(luò)合物不溶于水,可通過沉淀等作用分離去除水中的金屬離子。氧化石墨能夠應(yīng)用在交通運(yùn)輸、建筑材料、能量存儲與轉(zhuǎn)化等領(lǐng)域。合成氧化石墨售價氧化石墨烯(GO)表面有羥基、羧基、環(huán)氧基、羰基等親水性的活性基團(tuán),且片層間距...
氧化石墨烯/還原氧化石墨烯在光電傳感領(lǐng)域的應(yīng)用,其基本依據(jù)是本章前面部分所涉及到的各種光學(xué)性質(zhì)。氧化石墨烯因含氧官能團(tuán)的存在具備了豐富的光學(xué)特性,在還原為還原氧化石墨烯的過程中,不同的還原程度又具備了不同的性質(zhì),從結(jié)構(gòu)方面而言,是其SP2碳域與SP3碳域相互分割、相互影響、相互轉(zhuǎn)化帶來了如此豐富的特性。也正是這些官能團(tuán)的存在,使得氧化石墨烯可以方便的采用各種基于溶液的方法適應(yīng)多種場合的需要,克服了CVD和機(jī)械剝離石墨烯在轉(zhuǎn)移和大面積應(yīng)用時存在的缺點(diǎn),也正是這些官能團(tuán)的存在,使其便于實(shí)現(xiàn)功能化修飾,為其在不同場景的應(yīng)用提供了一個廣闊的平臺。通過調(diào)控氧化石墨烯的結(jié)構(gòu),降低氧化程度,降低難分解的芳香...
GO的載藥作用也可促進(jìn)間充質(zhì)干細(xì)胞的成骨分化。如用攜帶正電荷NH3+的GO(GO-NH3+)和攜帶負(fù)電荷COOH-的GO(GOCOOH-)交替層疊使其**外層為GO-COOH-,以這種GO作為載體,攜帶骨形態(tài)發(fā)生蛋白-2(BMP-2)和P物質(zhì)(SP)附著到鈦(Ti)種植體上,結(jié)果以Ti為基底,表面覆蓋GO-COOH-,攜帶BMP-2和SP(Ti/GO-/SP/BMP-2)種植體周圍的新骨生成量要明顯多于Ti/SP/BMP-2、Ti/GO-/BMP-2、Ti/GO-/SP。這證明GO可以同時攜帶BMP-2和SP到達(dá)局部并緩慢釋放,增加局部BMP-2和SP的有效劑量且發(fā)揮生物活性作用[89,90]...
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾,同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進(jìn)行加工。另外,GO具有獨(dú)特的電子結(jié)構(gòu)性能,可以通過熒光能量共振轉(zhuǎn)移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點(diǎn)及上轉(zhuǎn)換納米材料)的熒光。這些特點(diǎn)都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點(diǎn)作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對CdSe/ZnS量子點(diǎn)的熒光淬滅效率分別為66±17%、74±7%、7...
由于較低的毒性和良好的生物相容性,石墨烯材料在細(xì)胞成像方面**了一股研究熱潮。石墨烯及其衍生物本身具有特殊的平面結(jié)構(gòu)和光學(xué)性質(zhì),或者經(jīng)過熒光染料分子標(biāo)記之后,可用于體外細(xì)胞與***光學(xué)成像[63-66],使其在**顯像和***方面具有很大的應(yīng)用前景。Dai課題組[67]***利用納米尺寸的聚乙二醇功能化氧化石墨烯(GO-PEG)的近紅外發(fā)光性質(zhì)用于細(xì)胞成像。他們將抗體利妥昔單抗(anti-CD20)與納米GO-PEG共價結(jié)合形成納米GO-PEG-anti-CD20,然后將納米GO-PEG和納米GO-PEG-anti-CD20與B細(xì)胞或T細(xì)胞在培養(yǎng)液中4℃培養(yǎng)1h,培養(yǎng)液中納米GO-PEG的濃度...
TO具有光致親水特性,可保證高的水流速率,在沒有外部流體靜壓的情況下,與GO/TO情況相比,通過RGO/TO雜化膜的離子滲透率可降低至0.5%,而使用同位素標(biāo)記技術(shù)測量的水滲透率可保持在原來的60%,如圖8.5(d-g)所示。RGO/TO雜化膜優(yōu)異的脫鹽性能,表明TO對GO的光致還原作用有助于離子的有效排斥,而在紫外光照射下光誘導(dǎo)TO的親水轉(zhuǎn)化是保留優(yōu)異的水滲透性的主要原因。這種復(fù)合薄膜制備方法簡單,在水凈化領(lǐng)域具有很好的潛在應(yīng)用。。減少面內(nèi)難以修復(fù)的孔洞,從而提升還原石墨烯的本征導(dǎo)電性。開發(fā)氧化石墨常見問題在光通信領(lǐng)域,徐等人開發(fā)了飛秒氧化石墨烯鎖模摻鉺光纖激光器,與基于石墨烯的可飽和吸收體...
GO的載藥作用也可促進(jìn)間充質(zhì)干細(xì)胞的成骨分化。如用攜帶正電荷NH3+的GO(GO-NH3+)和攜帶負(fù)電荷COOH-的GO(GOCOOH-)交替層疊使其**外層為GO-COOH-,以這種GO作為載體,攜帶骨形態(tài)發(fā)生蛋白-2(BMP-2)和P物質(zhì)(SP)附著到鈦(Ti)種植體上,結(jié)果以Ti為基底,表面覆蓋GO-COOH-,攜帶BMP-2和SP(Ti/GO-/SP/BMP-2)種植體周圍的新骨生成量要明顯多于Ti/SP/BMP-2、Ti/GO-/BMP-2、Ti/GO-/SP。這證明GO可以同時攜帶BMP-2和SP到達(dá)局部并緩慢釋放,增加局部BMP-2和SP的有效劑量且發(fā)揮生物活性作用[89,90]...
(1)將GO作為熒光共振能量轉(zhuǎn)移的受體,構(gòu)建熒光共振能量轉(zhuǎn)移型氧化石墨烯生物傳感器,用于檢測各種生物分子。(2)可以將一些抗體鍵合在GO表面,構(gòu)建成抗體型氧化石墨烯傳感器,通常是將GO作為熒光共振能量轉(zhuǎn)移或化學(xué)發(fā)光共振能量轉(zhuǎn)移的受體,以此來檢測抗原物質(zhì);或者利用GO比表面積較大能結(jié)合更多抗體的特點(diǎn),將檢測信號進(jìn)行進(jìn)一步放大。(3)構(gòu)建多肽型氧化石墨烯傳感器。因?yàn)镚O是一種邊緣含有親水基團(tuán)(-COOH,-OH及其他含氧基團(tuán))而基底具有高疏水性的兩性物質(zhì),當(dāng)多肽與GO孵育時,多肽的芳環(huán)和其他疏水性殘基與GO的疏水性基底堆積,同時二者部分殘基之間也會存在靜電作用,這樣多肽組裝在GO上形成了多肽型氧化...
氧化石墨烯(GO)在很寬的光譜范圍內(nèi)具有光致發(fā)光性質(zhì),同時也是高效的熒光淬滅劑。氧化石墨烯(GO)具有特殊的光學(xué)性質(zhì)和多樣化的可修飾性,為石墨烯在光學(xué)、光電子學(xué)領(lǐng)域的應(yīng)用提供了一個功能可調(diào)控的強(qiáng)大平臺[6],其在光電領(lǐng)域的應(yīng)用日趨***。氧化石墨烯(GO)和還原氧化石墨烯(RGO)應(yīng)用于光電傳感,主要是作為電子給體或者電子受體材料。作為電子給體材料時,利用的是其在光的吸收、轉(zhuǎn)換、發(fā)射等光學(xué)方面的特殊性質(zhì),作為電子受體材料時,利用的是其優(yōu)異的載流子遷移率等電學(xué)性質(zhì)。本書前面的內(nèi)容中對氧化石墨烯(GO)、還原氧化石墨烯(RGO)的電學(xué)性質(zhì)已經(jīng)有了比較詳細(xì)的論述,本章在介紹其在光電領(lǐng)域的應(yīng)用之前,首...
氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實(shí)際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機(jī)理需要進(jìn)一步的研究。***,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)...
氧化石墨烯表面的-OH和-COOH等官能團(tuán)含有孤對電子,可作為配位體與具有空的價電子軌道的金屬離子發(fā)生絡(luò)合反應(yīng),生成不溶于水的絡(luò)合物,從而有效去除溶液中的金屬離子。Madadrang等45制得乙二胺四乙酸/氧化石墨烯復(fù)合材料(EDTA-GO),通過研究發(fā)現(xiàn)其對金屬離子的吸附機(jī)制主要為絡(luò)合反應(yīng),即氧化石墨烯的表面官能團(tuán)與水中的金屬離子反應(yīng)形成復(fù)雜的絡(luò)合物,具體過程如圖8.7所示,由于形成的絡(luò)合物不溶于水,可通過沉淀等作用分離去除水中的金屬離子。石墨烯在可見光范圍內(nèi)的光吸收系數(shù)近乎常數(shù)。應(yīng)該怎么做氧化石墨濾餅氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經(jīng)可以作為一種傳感材料,在生物...
隨著材料領(lǐng)域的擴(kuò)張,人們對于材料的功能性需求更為嚴(yán)苛,迫切需要在交通運(yùn)輸、建筑材料、能量存儲與轉(zhuǎn)化等領(lǐng)域應(yīng)用性質(zhì)更加優(yōu)良的材料出現(xiàn),石墨烯以優(yōu)異的聲、光、熱、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo),作為前驅(qū)體的GO以其靈活的物理化學(xué)性質(zhì)、可規(guī)?;苽涞奶攸c(diǎn)更成為應(yīng)用基礎(chǔ)研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強(qiáng)相互作用力,使GO之間很容易在不同體系中發(fā)生團(tuán)聚,其在納米尺度上表現(xiàn)的優(yōu)異性能隨著GO片層的聚集***的降低直至消失,極大地阻礙了GO的進(jìn)一步應(yīng)用。隨著含氧基團(tuán)的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升。杭州制備氧化石墨利用化學(xué)交聯(lián)和物理手段...
GO的載藥作用也可促進(jìn)間充質(zhì)干細(xì)胞的成骨分化。如用攜帶正電荷NH3+的GO(GO-NH3+)和攜帶負(fù)電荷COOH-的GO(GOCOOH-)交替層疊使其**外層為GO-COOH-,以這種GO作為載體,攜帶骨形態(tài)發(fā)生蛋白-2(BMP-2)和P物質(zhì)(SP)附著到鈦(Ti)種植體上,結(jié)果以Ti為基底,表面覆蓋GO-COOH-,攜帶BMP-2和SP(Ti/GO-/SP/BMP-2)種植體周圍的新骨生成量要明顯多于Ti/SP/BMP-2、Ti/GO-/BMP-2、Ti/GO-/SP。這證明GO可以同時攜帶BMP-2和SP到達(dá)局部并緩慢釋放,增加局部BMP-2和SP的有效劑量且發(fā)揮生物活性作用[89,90]...
在GO還原成RGO的過程中,材料的導(dǎo)電性、禁帶特性和折射率都會發(fā)生連續(xù)變化,形成獨(dú)特而優(yōu)異的可調(diào)諧型新材料。2014年,澳大利亞微光子學(xué)中心賈寶華教授領(lǐng)導(dǎo)的科研小組***發(fā)現(xiàn)在用激光直寫氧化石墨烯薄膜形成微納米結(jié)構(gòu)的過程中,材料的非線性可以實(shí)現(xiàn)激光功率可控的動態(tài)調(diào)諧。與傳統(tǒng)的非線性材料相比,氧化石墨烯的三階非線性高出了整整1000倍,隨著氧化石墨烯中的氧成分逐漸減少,而非線性也呈現(xiàn)出被動態(tài)調(diào)諧的豐富變化。不但材料的非線性系數(shù)的大小產(chǎn)生改變,其非線性吸收和折射率也發(fā)生變化,并且,這種豐富的非線性特性完全可以實(shí)現(xiàn)動態(tài)操控。石墨烯具有很好的電學(xué)性質(zhì),但氧化石墨本身卻是絕緣體(或是半導(dǎo)體)。改性氧化石...
GO作為一種新型的藥物載體材料,以其良好的生物相容性、較高的載藥率、靶向給藥等方面得到廣泛的關(guān)注。GO作為遞送藥物的載體,它不僅可以負(fù)載小分子藥物,也可以與抗體、DNA、蛋白質(zhì)等大分子結(jié)合,如圖7.2所示。普通的有機(jī)藥物很多都含有π結(jié)構(gòu),而這些藥物的水溶性都非常差,而GO具有較好的親水性,因此可以借助分散性較好的GO基材料來解決這個問題,即將上述藥物負(fù)載到GO基材料上,形成GO-藥物混合物材料。這對改善難溶***物的水溶性,降低藥物不良反應(yīng)以及提高藥物穩(wěn)定性和生物利用度等方面有非常重要的研究意義。氧化石墨中存在大量親水基團(tuán)(如羧基與羥基),在水溶液中容易分散。改性氧化石墨什么價格還原氧化石墨烯...
氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用失衡,傾向于氧化,導(dǎo)致中性粒細(xì)胞炎性浸潤,蛋白酶分泌增加,產(chǎn)生大量氧化中間產(chǎn)物,即活性氧。大量的實(shí)驗(yàn)研究已經(jīng)確認(rèn)細(xì)胞經(jīng)不同濃度的GO處理后,都會增加細(xì)胞中活性氧的量。而活性氧的量可以通過商業(yè)化的無色染料染色后利用流式細(xì)胞儀或熒光顯微鏡檢測到。氧化應(yīng)激是由自由基在體內(nèi)產(chǎn)生的一種負(fù)面作用,并被認(rèn)為是導(dǎo)致衰老和疾病的一個重要因素。氧化應(yīng)激反應(yīng)不僅與GO的濃度[17,18]有關(guān),還與GO的氧化程度[19]有關(guān)。如將蠕蟲分別置于10μg/ml和20μg/ml的PLL-PEG修飾的GO溶液中,GO會引起蠕蟲細(xì)胞內(nèi)活性氧的積累,其活性氧分別增加59.2%和75.3%。石墨烯具...
GO/RGO在光纖傳感領(lǐng)域會有越來越多的應(yīng)用,其基本的原理是利用石墨烯及氧化石墨烯的淬滅特性、分子吸附特性以及對金屬納米結(jié)構(gòu)的惰性保護(hù)作用等,通過吸收光纖芯層穿透的倏逝波改變光纖折射率或者基于表面等離子體共振(SPR)效應(yīng)影響折射率。GO/RGO可以在光纖的側(cè)面、端面對光進(jìn)行吸收或者反射,而為了增加光與GO/RGO層的相互作用,采用了不同光纖幾何彎曲形狀,如直型、U型、錐型和雙錐型等。有鉑納米顆粒修飾比沒有鉑納米顆粒修飾的氧化石墨烯薄膜光纖傳感器靈敏度高三倍,為多種氣體的檢測提供了一個理想的平臺。石墨烯微片的缺陷有時使其無法滿足某些復(fù)合材料在抗靜電或?qū)щ?、隔熱或?qū)岬确矫娴奶厥庖?。綠色氧化石...
氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實(shí)際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機(jī)理需要進(jìn)一步的研究。***,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)...
氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經(jīng)可以作為一種傳感材料,在生物、醫(yī)學(xué)領(lǐng)域的應(yīng)用充分說明了這一點(diǎn)。經(jīng)過功能化的氧化石墨烯/還原氧化石墨烯在更加***的領(lǐng)域內(nèi)得到了應(yīng)用,特別在光探測、光學(xué)成像、新型光源、非線性器件等光電傳感相關(guān)領(lǐng)域有著豐富的應(yīng)用。光電探測器是石墨烯問世后**早應(yīng)用的領(lǐng)域之一。2009年,Xia等利用機(jī)械剝離的石墨烯制備出了***個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3層石墨烯作為有源層,Ti/Pd/Au作源漏電極,Si作為背柵極并在其上沉淀300nm厚的SiO2,在電極和石墨烯的接觸面上因?yàn)楣瘮?shù)的不同,能帶會發(fā)生彎曲并產(chǎn)生內(nèi)建電場。...