實(shí)際應(yīng)用機(jī)器視覺,指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,行家系統(tǒng),自動規(guī)劃,智能搜索,定理證明,博弈,自動程序設(shè)計,智能控制,機(jī)器人學(xué),語言和圖像理解,遺傳編程等。學(xué)科范疇人工智能是一門邊緣學(xué)科,屬于自然科學(xué)和社會科學(xué)的交叉。涉及學(xué)科哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計算機(jī)科學(xué),信息論,控制論,不定性論研究范疇自然語言處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識獲取,組合調(diào)度問題,感知問題,模式識別,邏輯程序設(shè)計軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法意識和人工智能人工智能就其本質(zhì)而言,是對人的思維的信息過程的模擬。對于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機(jī)制,制造出“類人腦”的機(jī)器;二是功能模擬,暫時撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進(jìn)行模擬。 有了像美國人工智能協(xié)會這樣的基金會.因?yàn)锳I開發(fā) 的需要,還出現(xiàn)了一陣研究人員進(jìn)入私人公司的熱潮。廈門AIGC運(yùn)營
【應(yīng)用】:圖像生成(AI繪畫)、文本生成(AI寫作、ChatBot)、視頻生成、多模態(tài)生成等。從生成內(nèi)容層面AIGC可分為五個方面:1、文本生成基于NLP的文本內(nèi)容生成根據(jù)使用場景可分為非交互式與交互式文本生成。非交互式文本生成包括摘要/標(biāo)題生成、文本風(fēng)格遷移、文章生成、圖像生成文本等。交互式文本生成主要包括聊天機(jī)器人、文本交互游戲等?!敬硇援a(chǎn)品或模型】:JasperAI、、ChatGPT、Bard、AIdungeon等。2、圖像生成圖像生成根據(jù)使用場可分為圖像編輯修改與圖像自主生成。圖像編輯修改可應(yīng)用于圖像超分、圖像修復(fù)、人臉替換、圖像去水印、圖像背景去除等。圖像自主生成包括端到端的生成,如真實(shí)圖像生成卡通圖像、參照圖像生成繪畫圖像、真實(shí)圖像生成素描圖像、文本生成圖像等?!敬硇援a(chǎn)品或模型】:EditGAN,Deepfake,DALL-E、MidJourney、StableDiffusion,文心一格等。3、音頻生成音頻生成技術(shù)較為成熟,在C端產(chǎn)品中也較為常見,如語音克隆,將人聲1替換為人聲2。還可應(yīng)用于文本生成特定場景語音,如數(shù)字人播報、語音客服等。此外,可基于文本描述、圖片內(nèi)容理解生成場景化音頻、樂曲等?!敬硇援a(chǎn)品或模型】:DeepMusic、WaveNet、DeepVoice、MusicAutoBot等。 漳州公司AIGC是什么MINSKY和MARR的成果如今用到了生產(chǎn)線上的相機(jī)和計算機(jī)中,進(jìn)行質(zhì)量控制.
認(rèn)知模擬經(jīng)濟(jì)學(xué)家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A(chǔ),如認(rèn)知科學(xué),運(yùn)籌學(xué)和經(jīng)營科學(xué)。他們的研究團(tuán)隊使用心理學(xué)實(shí)驗(yàn)的結(jié)果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內(nèi)基梅隆大學(xué)沿襲下來,并在80年代于SOAR發(fā)展到高峰?;谶壿嫴幌癜瑐悺ぜ~厄爾和赫伯特·西蒙,JOHNMCCARTHY認(rèn)為機(jī)器不需要模擬人類的思想,而應(yīng)嘗試找到抽象推理和解決問題的本質(zhì),不管人們是否使用同樣的算法。他在斯坦福大學(xué)的實(shí)驗(yàn)室致力于使用形式化邏輯解決多種問題,包括知識表示,智能規(guī)劃和機(jī)器學(xué)習(xí).致力于邏輯方法的還有愛丁堡大學(xué),而促成歐洲的其他地方開發(fā)編程語言PROLOG和邏輯編程科學(xué).“反邏輯”斯坦福大學(xué)的研究者(如馬文·閔斯基和西摩爾·派普特)發(fā)現(xiàn)要解決計算機(jī)視覺和自然語言處理的困難問題,需要專門的方案-他們主張不存在簡單和通用原理(如邏輯)能夠達(dá)到所有的智能行為。
人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機(jī)器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機(jī)視覺、智能機(jī)器人、自動程序設(shè)計等方面。研究方法如今沒有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結(jié)論的問題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學(xué)對于航空工程一樣,人類生物學(xué)對于人工智能研究是沒有關(guān)系的?智能行為能否用簡單的原則(如邏輯或優(yōu)化)來描述?還是必須解決大量完全無關(guān)的問題?智能是否可以使用高級符號表達(dá),如詞和想法?還是需要“子符號”的處理?JOHNHAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類為SYNTHETICINTELLIGENCE,這個概念后來被某些非GOFAI研究者采納。 通過分析這些信 息,可以推斷出圖像可能是什么.同時期另一項(xiàng)成果是PROLOGE語言,于1972年提出。
AIGC協(xié)助劇本創(chuàng)作,釋放創(chuàng)意潛力通過對海量精良劇本的學(xué)習(xí),AI能根據(jù)特定需求快速生成不同風(fēng)格或架構(gòu)的劇本,在極大提高工作者工作效率的同時,AI也在激發(fā)創(chuàng)意,幫助產(chǎn)出更精良的作品。事實(shí)上,將AI引入劇本創(chuàng)作的做法早已有之。2016年,紐約大學(xué)研發(fā)的AI在學(xué)習(xí)了幾十部經(jīng)典科幻電影劇本后成功編寫了劇本《陽春》以及一段配樂歌詞。經(jīng)過修改、調(diào)整后的成品只有區(qū)區(qū)八分鐘,內(nèi)容也平平無奇,但《陽春》在各大視頻網(wǎng)站特別終收獲的百萬級播放量依然證明外界對AI創(chuàng)作的興趣很大。2020年,GPT-3被用于創(chuàng)作一個短劇,再次引發(fā)普遍關(guān)注。通過這些早期試驗(yàn)可以看出AI在劇本創(chuàng)作方面的潛力,但要真正將其轉(zhuǎn)化為生產(chǎn)力,還要AI更貼合具體的應(yīng)用場景,做針對性訓(xùn)練,并結(jié)合實(shí)際業(yè)務(wù)需求開發(fā)或定制功能。海外一些影視公司如FinalWrite和Logline等都偏向垂直式工具,國內(nèi)的海馬輕帆公司深耕中文劇本、小說、IP等領(lǐng)域,也已經(jīng)收獲百萬級用戶。 "邏輯行家"對公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個重要的里程碑。廈門AIGC案例
1963年MIT從美國得到一筆220萬美元的資助,用于研究機(jī)器輔助識別.這筆資助來自,高級研究計劃署。。廈門AIGC運(yùn)營
視頻生成視頻生成與圖像生成在原理上相似,主要分為視頻編輯與視頻自主生成。視頻編輯可應(yīng)用于視頻超分(視頻畫質(zhì)增強(qiáng))、視頻修復(fù)(老電影上色、畫質(zhì)修復(fù))、視頻畫面剪輯(識別畫面內(nèi)容,自動場景剪輯)。視頻自主生成可應(yīng)用于圖像生成視頻(給定參照圖像,生成一段運(yùn)動視頻)、文本生成視頻(給定一段描述性文字,生成內(nèi)容相符視頻)?!敬硇援a(chǎn)品或模型】:Deepfake,videoGPT,Gliacloud、Make-A-Video、Imagenvideo等。5、多模態(tài)生成以上四種模態(tài)可以進(jìn)行組合搭配,進(jìn)行模態(tài)間轉(zhuǎn)換生成。如文本生成圖像(AI繪畫、根據(jù)prompt提示語生成特定風(fēng)格圖像)、文本生成音頻(AI作曲、根據(jù)prompt提示語生成特定場景音頻)、文本生成視頻(AI視頻制作、根據(jù)一段描述性文本生成語義內(nèi)容相符視頻片段)、圖像生成文本(根據(jù)圖像生成標(biāo)題、根據(jù)圖像生成故事)、圖像生成視頻?!敬硇援a(chǎn)品或模型】:DALL-E、MidJourney、StableDiffusion等。 廈門AIGC運(yùn)營