將近場聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來發(fā)展的納米力學(xué)測試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時也將它們統(tǒng)稱為接觸共振力顯微術(shù)(contact resonance force microscopy,CRFM)。納米力學(xué)測試的結(jié)果可以為新材料的設(shè)計和應(yīng)用提供重要參考。湖南微納米力學(xué)測試廠家供應(yīng)
一般力學(xué)原理包括:。能量和動量守恒原理;。哈密頓變分原理;。對稱原理。由于研究的物體小,納米力學(xué)也要考慮:。當(dāng)物體尺寸和原子距離可比時,物體的離散性;。物體內(nèi)自由度的多樣性和有限性。。熱脹落的重要性;。熵效應(yīng)的重要性;。量子效應(yīng)的重要性。這些原理可提供對納米物體新異性質(zhì)深入了解。新異性質(zhì)是指這種性質(zhì)在類似的宏觀物體沒有或者很不相同。特別是,當(dāng)物體變小,會出現(xiàn)各種表面效應(yīng),它由納米結(jié)構(gòu)較高的表面與體積比所決定。這些效應(yīng)影晌納米結(jié)構(gòu)的機(jī)械能和熱學(xué)性質(zhì)(熔點,熱容等)例如,由于離散性,固體內(nèi)機(jī)械波要分散,在小區(qū)域內(nèi),彈性力學(xué)的解有特別的行為。自由度大引起熱脹落是納米顆粒通過潛在勢壘產(chǎn)生熱隧道及液體和固體交錯擴(kuò)散的理由。小和熱漲落提供了納米顆粒布朗運動的基本理由。在納米范圍增加了熱漲落重要性和結(jié)構(gòu)熵,使納米結(jié)構(gòu)產(chǎn)生超彈性,熵彈性(熵力)和其它新彈性。開放納米系統(tǒng)的自組織和合作行為中,結(jié)構(gòu)熵也令人產(chǎn)生很大興趣。深圳電線電纜納米力學(xué)測試供應(yīng)商納米力學(xué)測試還可以評估材料在高溫、低溫等極端環(huán)境下的性能表現(xiàn)。
量子效應(yīng)決定物理系統(tǒng)內(nèi)個別原子間的相互作用力。在納米力學(xué)中用一些原子間勢能的平均數(shù)學(xué)模型引入量子效應(yīng)。在經(jīng)典多體動力學(xué)內(nèi)加入原子間勢能提供了納米結(jié)構(gòu)和原子尺寸決定性的力學(xué)模型。數(shù)據(jù)方法求解這些模型稱為分子動力學(xué)(MD),有時稱為分子力學(xué)。非決定性數(shù)字近似包括蒙特卡羅,動力蒙卡羅和其它方法。現(xiàn)代的數(shù)字工具也包括交叉通用近似,允許同時和連續(xù)利用原子尺寸的模型。發(fā)展這些復(fù)雜的模型是另一應(yīng)用力學(xué)的研究課題。
借助原子力顯微鏡(AFM)的納米力學(xué)測試法,利用原子力顯微鏡探針的納米操縱能力對一維納米材料施加彎曲或拉伸載荷。施加彎曲載荷時,原子力顯微鏡探針作用在一維納米懸臂梁結(jié)構(gòu)高自山端國雙固支結(jié)構(gòu)的中心位置,彎曲撓度和載荷通過原子力顯微鏡探針懸曾梁的位移和懸臂梁的剛度獲取,依據(jù)連續(xù)力學(xué)理論,由試樣的載荷一撓度曲線獲得其彈性模量、強度和韌性等力學(xué)性能參數(shù)。這種方法加載機(jī)理簡單,相對拉伸法容易操作,缺點是原子力顯微鏡探針的尺寸與被測納米試樣相比較大,撓度較大時探針的滑動以及試樣中心位置的對準(zhǔn)精度嚴(yán)重影響測試精度3、借助微機(jī)電系統(tǒng)(MEMS)技術(shù)的片上納米力學(xué)測試法基于 MEMS 的片上納米力學(xué)測試法采用 MEMS 微加工工藝將微驅(qū)動單元、微傳感單元或試樣集成在同一芯片上,通過微驅(qū)動單元對試樣施加載荷,微位移與微力檢測單元檢測試樣變形與加載力,進(jìn)面獲取試樣的力學(xué)性能。納米力學(xué)測試在航空航天領(lǐng)域,為超輕、強度高材料研發(fā)提供支持。
即使源電阻大幅降低至1MW,對一個1mV的信號的測量也接近了理論極限,因此要使用一個普通的數(shù)字多用表(DMM)進(jìn)行測量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測量電壓時的輸入偏移電流很高,而相對于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測量儀器而言,DMM的輸入電阻又過低。這些特點增加了測量的噪聲,給電路帶來不必要的干擾,從而造成測量的誤差。系統(tǒng)搭建完畢后,必須對其性能進(jìn)行校驗,而且消除潛在的誤差源。誤差的來源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對降低這些誤差的一些途徑進(jìn)行探討。納米力學(xué)測試可以幫助研究人員了解納米材料的力學(xué)響應(yīng)機(jī)制,從而推動納米科學(xué)的發(fā)展。廣東高精度納米力學(xué)測試服務(wù)
納米力學(xué)測試技術(shù)的發(fā)展推動了納米材料和納米器件的性能優(yōu)化。湖南微納米力學(xué)測試廠家供應(yīng)
目前微納米力學(xué)性能測試方法的發(fā)展趨勢主要向快速定量化以及動態(tài)模式發(fā)展,測試對象也越來越多地涉及軟物質(zhì)、生物材料等之前較難測試的樣品。另外,納米力學(xué)測試方法的標(biāo)準(zhǔn)化也在逐步推進(jìn)。建立標(biāo)準(zhǔn)化的納米力學(xué)測試方法標(biāo)志著相關(guān)測試方法的逐漸成熟,對納米科學(xué)和技術(shù)的發(fā)展也具有重要的推動作用。絕大多數(shù)的納米力學(xué)測試都需要復(fù)雜的樣品制備過程。為了使樣品制備簡單化和人性化,FT-NMT03采用能夠感知力的微鑷子和不同形狀的微力傳感探針針尖來實現(xiàn)對微納結(jié)構(gòu)的精確提取、轉(zhuǎn)移直至將其固定在測試平臺上。總而言之,集中納米操作以及力學(xué)-電學(xué)性能同步測試功能于一體的FT-NMT03能夠滿足幾乎所有的納米力學(xué)測試需求。湖南微納米力學(xué)測試廠家供應(yīng)