厚片吸塑在現(xiàn)代包裝中的重要性及應(yīng)用
壓縮機(jī)單層吸塑包裝:循環(huán)使用的創(chuàng)新解決方案
厚片吸塑產(chǎn)品選擇指南
厚片吸塑的類型、特點(diǎn)和優(yōu)勢(shì)
雙層吸塑圍板箱的優(yōu)勢(shì)及環(huán)保材料的可持續(xù)利用
厚片吸塑:革新包裝運(yùn)輸行業(yè)的效率與安全保障
選圍板箱品質(zhì)很重要——無(wú)錫鑫旺德行業(yè)品質(zhì)之選
雙層吸塑蓋子的創(chuàng)新應(yīng)用與優(yōu)勢(shì)解析
電機(jī)單層吸塑包裝的優(yōu)勢(shì)與應(yīng)用
雙層吸塑底托:提升貨物運(yùn)輸安全與效率的較佳選擇
全細(xì)胞記錄構(gòu)型(whole-cellrecording) 高阻封接形成后,繼續(xù)以負(fù)壓抽吸使電極管內(nèi)細(xì)胞膜破裂,電極胞內(nèi)液直接相通,而與浴槽液絕緣,這種形式稱為“全細(xì)胞”記錄。它既可記錄膜電位又可記錄膜電流。其中膜電位可在電流鉗情況下記錄,或?qū)⒉9苓B到標(biāo)準(zhǔn)高阻微電極放大器上記錄。在電壓鉗條件下記錄到的大細(xì)胞全細(xì)胞電流可達(dá)nA級(jí),全細(xì)胞鉗的串聯(lián)電阻(玻管和細(xì)胞內(nèi)部之間的電阻)應(yīng)當(dāng)補(bǔ)償。任何流經(jīng)膜的電流均流經(jīng)這一電阻,所引起的電壓降將使玻管電壓不同于細(xì)胞內(nèi)的真正電位。電流愈大,愈需對(duì)串聯(lián)電阻進(jìn)行補(bǔ)償。全細(xì)胞鉗應(yīng)注意細(xì)胞必需合理的小到其電流能被放大器測(cè)到的范圍(25~50nA)。減少串聯(lián)電阻的方法是玻管尖要比單通道記錄大。小片膜的孤立使對(duì)單個(gè)離子通道進(jìn)行研究成為可能。美國(guó)單電極膜片鉗參數(shù)
電壓鉗技術(shù),是20世紀(jì)初由Cole發(fā)明,Hodgkin和Huxley完善,其設(shè)計(jì)的主要目的是為了證明動(dòng)作電位的產(chǎn)生機(jī)制,即動(dòng)作電位的峰電位是由于膜對(duì)鈉的通透性發(fā)生了一過(guò)性的增大過(guò)程。但當(dāng)時(shí)沒有直接測(cè)定膜通透性的方法,于是就用膜對(duì)某種離子的電導(dǎo)來(lái)**該種離子的通透性,膜電導(dǎo)測(cè)定的依據(jù)是電學(xué)中的歐姆定律,如膜的Na電導(dǎo)GNa與電化學(xué)驅(qū)動(dòng)力(Em-ENa)和膜電流INa的關(guān)系GNa=INa/(Em-ENa).因此可通過(guò)測(cè)量膜電流,再利用歐姆定律來(lái)計(jì)算膜電導(dǎo),但是,利用膜電流來(lái)計(jì)算膜電導(dǎo)時(shí),記錄膜電流期間的膜電位必須保持不變,否則膜電流的變化就不能**膜電導(dǎo)的變化。這一條件是利用電壓鉗技術(shù)實(shí)現(xiàn)的。下張幻燈中的右邊兩張圖是Hodgkin和Huxley在半個(gè)世紀(jì)以前利用電壓鉗記錄的搶烏賊的動(dòng)作電位和動(dòng)作電位過(guò)程中的膜電流的變化圖,他們的實(shí)驗(yàn)***證明參與動(dòng)作電位的離子流由Na,k,漏(Cl)三種成分組成。并對(duì)這些離子流進(jìn)行了定量分析。這一技術(shù)對(duì)闡明動(dòng)作電位的本質(zhì)和離子通道的的研究做出了極大的貢獻(xiàn)。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*34小時(shí)隨時(shí)人工在線咨詢.進(jìn)口單電極膜片鉗哪家好封接(seal)是膜片鉗記錄的關(guān)鍵步驟之一。
1976年德國(guó)馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細(xì)胞上用雙電極鉗制膜電位的同時(shí),記錄到ACh的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負(fù)壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時(shí)的噪聲實(shí)現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對(duì)該技術(shù)進(jìn)行了改進(jìn),引進(jìn)了膜片游離技術(shù)和全細(xì)胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時(shí)間分辨率。1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。Sakmann和Neher也因其杰出的工作和突出貢獻(xiàn),榮獲1991年諾貝爾醫(yī)學(xué)和生理學(xué)獎(jiǎng)。
膜片鉗技術(shù)發(fā)展歷史:1976年德國(guó)馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細(xì)胞上用雙電極鉗制膜電位的同時(shí),記錄到ACh啟動(dòng)的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負(fù)壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時(shí)的噪聲實(shí)現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對(duì)該技術(shù)進(jìn)行了改進(jìn),引進(jìn)了膜片游離技術(shù)和全細(xì)胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時(shí)間分辨率。1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。Sakmann和Neher也因其杰出的工作和突出貢獻(xiàn),榮獲1991年諾貝爾醫(yī)學(xué)和生理學(xué)獎(jiǎng)。全細(xì)胞膜片鉗記錄是應(yīng)用較早,也是普遍的鉗位技術(shù)。
光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項(xiàng)整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評(píng)為"Methodoftheyear2010"[19];美國(guó)麻省理工學(xué)院科技評(píng)述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué),特別是神經(jīng)和心臟研究領(lǐng)域中熱門的研究方向之一。目前這一技術(shù)正在被全球幾百家從事心臟學(xué)、神經(jīng)科學(xué)和神經(jīng)工程研究的實(shí)驗(yàn)室使用,幫助科學(xué)家們深入理解大腦的功能,進(jìn)而為深刻認(rèn)識(shí)神經(jīng)、精神疾病、心血管疾病的發(fā)病機(jī)理并研發(fā)針對(duì)疾病干預(yù)和的新技術(shù)。用膜片鉗,輕松掌握細(xì)胞膜離子通道的電生理特性!進(jìn)口細(xì)胞膜片鉗技術(shù)
膜片鉗通常由兩個(gè)平行的、彎曲的鉗臂組成,鉗臂的末端有一對(duì)夾持墊,可以?shī)A住薄片材料。美國(guó)單電極膜片鉗參數(shù)
膜片鉗技術(shù)的建立1.拋光及填充好玻璃管微電極,并將它固定在電極夾持器中。2.通過(guò)一個(gè)與電極夾持器連接的導(dǎo)管給微電極內(nèi)一個(gè)壓力,一直到電極浸入記錄槽溶液中。3.當(dāng)電極浸沒在溶液中時(shí)給電極一個(gè)測(cè)定脈沖(命令電壓,如5-10ms,10mV)讀出電流,按照歐姆定律計(jì)算電阻。4.通過(guò)膜片鉗放大器的控制鍵將微電極前列的連接電位(junctionpotentials)調(diào)至零位,這種電位差是由于電極內(nèi)填充溶液與浸浴液不同離子成分的遷移造成的。5.用微操縱器將微電極前列在直視下靠近要記錄的細(xì)胞表面,并觀察電流的變化,直至阻抗達(dá)到1GΩ以上形成"干兆封接"6.調(diào)整靜息膜電位到期望的鉗位電壓的水平,使放大器從"搜尋"轉(zhuǎn)到"電壓鉗"時(shí)細(xì)胞不至于鉗位到零。美國(guó)單電極膜片鉗參數(shù)