不同的全自動膜片鉗技術(shù)所采用的原理如PopulationPatchClamp技術(shù)∶同SealChip技術(shù)一樣,完全摒齊了玻璃電極,而是采用PatchPlate平面電極芯片。該芯片含有多個小室,每個小室中含有很多1-2μm的封接孔。在記錄時,每個小室中封接成功的細胞|數(shù)目較多,獲得的記錄是這些細胞通道電流的平均值。因此,不同小室其通道電流的一致性非常好,變異系數(shù)很小。美國Axon(MDS)公司采用這一技術(shù)研發(fā)出了全自動高通量的lonWorksQuattro系統(tǒng),成為藥物初期篩選的金標準準確、穩(wěn)定、高效,膜片鉗技術(shù)讓您的研究更上一層樓!雙分子層膜片鉗技術(shù)
電壓鉗技術(shù)是由科爾發(fā)明的,并在20世紀初由霍奇金和赫胥黎完善。其設計的主要目的是證明動作電位的產(chǎn)生機制,即動作電位的峰值電位是由于膜對鈉的通透性瞬間增加。但當時還沒有直接測量膜通透性的方法,所以用膜電導來測量離子通透性。膜電導測量的基礎是電學中的歐姆定律,如膜Na電導GNa與電化學驅(qū)動力(Em-ENa)的關系,膜電流INaGNa=INa/(Em-ENa)。因此,可以通過測量膜電流,然后利用歐姆定律來計算膜電導。然而,膜電導可以通過使用膜電流來計算。這個條件是通過電壓鉗技術(shù)實現(xiàn)的。下一張幻燈片中右邊的兩張圖顯示了squid的動作電位和動作電位過程中膜電流的變化,這是霍奇金和赫胥黎在半個世紀前用電壓鉗記錄的。他們的實驗證明了參與動作電位的離子電流由三種成分組成:Na、K、Cl。對這些離子流進行了定量分析。這項技術(shù)為闡明動作電位的本質(zhì)和離子通道的研究做出了巨大貢獻。日本膜片鉗離子通道由通道蛋白介導的膜電導構(gòu)成了膜反應的主動成分,它的電流電壓關系是非線性的。
1976年德國馬普生物物理化學研究所Neher和Sakmann在青蛙肌細胞上記錄記錄到AChjihuo的單通道離子電流1980年Sigworth等用負壓吸引,得到10-100GΩ的高阻封接(Giga-sea1),降低了記錄時的噪聲1981年Hamill和Neher等引進了膜片游離技術(shù)和全細胞記錄技術(shù)1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。膜片鉗技術(shù)原理膜片鉗技術(shù)是用玻璃微電極接觸細胞,形成吉歐姆(GΩ)阻抗,使得與電極前列開口處相接的細胞膜的膜片與周圍在電學上絕緣。滔博生物TOP-Bright專注基于多種離子通道靶點的化合物體外篩選,服務于全球藥企的膜片鉗公司,快速獲得實驗結(jié)果,專業(yè)團隊,7*24小時隨時人工在線咨詢.
膜片鉗的基本原理則是利用負反饋電子線路,將微電極前列所吸附的一個至幾個平方微米的細胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動態(tài)或靜態(tài)觀察,從而研究其功能。膜片鉗技術(shù)實現(xiàn)膜電流固定的關鍵步驟是在玻璃微電極前列邊緣與細胞膜之間形成高阻密封,其阻抗數(shù)值可達10~100GΩ(此密封電阻是指微電極內(nèi)與細胞外液之間的電阻)。由于此阻值如此之高,故基本上可看成絕緣,其上之電流可看成零,形成高阻密封的力主要有氫健、范德華力、鹽鍵等。此密封不僅電學上近乎絕緣,在機械上也是較牢固的。又由于玻璃微電極前列管徑很小,其下膜面積只約1μm2,在這么小的面積上離子通道數(shù)量很少,一般只有一個或幾個通道,經(jīng)這一個或幾個通道流出的離子數(shù)量相對于整個細胞來講很少,可以忽略,也就是說電極下的離子電流對整個細胞的靜息電位的影響可以忽略,那么,只要保持電極內(nèi)電位不變,則電極下的一小片細胞膜兩側(cè)的電位差就不變,從而實現(xiàn)電位固定。滔博生物TOP-Bright專注基于多種離子通道靶點的化合物體外篩選,服務于全球藥企的膜片鉗公司,快速獲得實驗結(jié)果,專業(yè)團隊,7*28小時隨時人工在線咨詢.膜片鉗,開啟細胞電生理研究新篇章!
膜片鉗放大器是整個實驗系統(tǒng)中的主要,它可用來作單通道或全細胞記錄,其工作模式可以是電壓鉗,也可以是電流鉗。從原理來說,膜片鉗放大器的探頭電路即I-V變換器有兩種基本結(jié)構(gòu)形式,即電阻反饋式和電容反饋式,前者是一種典型的結(jié)構(gòu),后者因用反饋電容取代了反饋電阻,降低了噪聲,所以特別適合較低噪聲的單通道記錄。由于供膜片鉗實驗的專門的計算機硬件及相應的軟件程序的相繼出現(xiàn),使得膜片鉗實驗操作簡便、效率提高、效率提高膜片鉗,您研究離子通道功能的得力助手!芬蘭單電極膜片鉗技術(shù)
膜片鉗的設計使得夾持力均勻,不會損壞薄片材料。雙分子層膜片鉗技術(shù)
在膜片鉗技術(shù)的發(fā)展過程中主要形成了五種記錄模式,即細胞貼附模式(cell-attachedmode或loose-seal-cellattached mode)、膜內(nèi)面向外模式(inside-out mode)、膜外面向外模式(outside-out mode)、常規(guī)全細胞模式(conventional whole-cell mode)和穿孔膜片模式(perforated patch mode)。a.亞細胞水平:細胞貼附模式,可記錄通過電極下膜片中通道蛋白的離子電流(紅色虛線箭頭)。在全細胞膜片鉗中,膜片破裂,因此可以記錄全細胞的宏觀電流,它表示整個細胞的總和電流(藍色虛線箭頭)。b.細胞水平:來自神經(jīng)元不同部分的全細胞同步記錄可確定信號傳遞的方向。c.神經(jīng)元網(wǎng)絡水平:全細胞記錄可以在一個連接神經(jīng)元的小網(wǎng)絡中進行。d.活物水平:可以在執(zhí)行任務或自由走動的動物大腦中進行全細胞記錄。雙分子層膜片鉗技術(shù)