隨著現(xiàn)代分子生物學技術的快速發(fā)展和科學技術的進步,特別是后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,這為在體內研究基因表達、分子間相互作用、細胞增殖、細胞信號轉導、誘導分化、細胞凋亡和新生血管生成提供了良好的生物學條件。然而,盡管利用現(xiàn)有的分子生物學方法對基因表達與蛋白質的相互作用進行了深入細致的研究,但仍然無法實現(xiàn)對蛋白質和基因活性的實時動態(tài)監(jiān)測。在細胞的生理過程中,基因尤其是蛋白質的表達、修飾和相互作用往往是可逆的、動態(tài)變化的。目前,分子生物學方法無法捕捉到蛋白質和基因的這些變化,但獲得這些信息對于研究基因表達與蛋白質的相互作用非常重要。因此,有必要發(fā)展一種動態(tài)、實時、連續(xù)監(jiān)測蛋白質和基因活性的方法。高能短脈沖激光,多光子顯微鏡實現(xiàn)超快、超高清成像速度。熒光多光子顯微鏡原理
使用MPM對神經(jīng)元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經(jīng)元,這樣不僅避免掃描到任何未標記的神經(jīng)纖維,還可以優(yōu)化激光束的掃描時間。隨機訪問掃描可以通過聲光偏轉器(AOD)來實現(xiàn),其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產(chǎn)生的聲波引起周期性的折射率光柵,激光束通過光柵時發(fā)生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現(xiàn)一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現(xiàn)3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現(xiàn)運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被普遍的使用。美國進口多光子顯微鏡代理商多光子顯微鏡在基礎科學和臨床診斷領域的應用范圍正在持續(xù)增長。
雙光子顯微鏡工作原理是將超快的紅外激光脈沖傳輸?shù)綐悠分?,在樣品中與組織或熒光標記相互作用,這些組織或熒光標記發(fā)出用于創(chuàng)建圖像的信號。雙光子顯微鏡被多用于生物學研究,因為它能夠產(chǎn)生高分辨率的3-D圖像,深度達1毫米。然而,這些優(yōu)點帶來了有限的成像速度,因為微光條件需要逐點圖像采集和重建的點檢測器。為了加快成像速度,科學家之前開發(fā)了一種多焦點激光照明方法,該方法使用數(shù)字微鏡設備(DMD),這是一種通常用于投影儀的低成本光掃描儀。此前人們認為這些DMD不能與超快激光一起工作。然而現(xiàn)在解決了這個問題,這使得DMD在超快激光應用中得以應用,這些應用包括光束整形、脈沖整形、快速掃描和雙光子成像。DMD在樣品內隨機選擇的位置上產(chǎn)生5到30點聚焦激光。
快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現(xiàn)3D成像的手段。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現(xiàn)軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠程聚焦、SLM和可調電動透鏡。點掃描多光子顯微鏡可以深入樣本并捕捉高質量的圖像,但這個過程極其緩慢,因為圖像是一次形成一個點。
現(xiàn)代分子生物學技術的迅速發(fā)展和科技的進步,特別是隨著后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,為在體研究基因表達規(guī)律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現(xiàn)有的分子生物學方法,已經(jīng)對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現(xiàn)對蛋白質和基因活動的實時、動態(tài)監(jiān)測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因此,發(fā)展能用于、動態(tài)、實時、連續(xù)監(jiān)測蛋白質和基因活動的方法是非常必要的。多光子顯微鏡,為材料科學研究和工業(yè)應用提供全新視角。嚙齒類多光子顯微鏡數(shù)據(jù)采集
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術的一種新技術。熒光多光子顯微鏡原理
細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發(fā)生很強的變化。熒光多光子顯微鏡原理