久久青青草视频,欧美精品v,曰韩在线,不卡一区在线观看,中文字幕亚洲区,奇米影视一区二区三区,亚洲一区二区视频

美國多光子顯微鏡配置

來源: 發(fā)布時間:2024-07-08

根據(jù)阿貝成像原理,許多光學(xué)成像系統(tǒng)是一個低通濾波器,物平面包含從低頻到高頻的信息,透鏡口徑會限制高頻信息通過,只允許一定的低頻通過,因此丟失了高頻信息會使成像所得圖像的細(xì)節(jié)變模糊,降低分辨率。對于三維成像來說,寬場照明時得到的信息不僅包含物鏡焦平面上樣品的部分信息,同時還包含焦平面外的樣品信息。由于受到焦平面外的信息干擾,常規(guī)熒光顯微鏡無法獲得層析圖像。三維結(jié)構(gòu)光照明顯微鏡能夠提高分辨率、獲得層析圖像,是因為利用特定結(jié)構(gòu)的照明光能引入樣品的高頻信息,當(dāng)結(jié)構(gòu)光的空間頻率足夠高時,只有靠近焦面的部分才能被結(jié)構(gòu)光調(diào)制,超出這一區(qū)域,逐漸轉(zhuǎn)變?yōu)榫鶆蛘彰鳎簿褪侵挥薪姑娓浇挠邢迏^(qū)域具有相對完整的頻譜信息,離焦后,高頻信息迅速衰減,所以使用高頻結(jié)構(gòu)光照明可以區(qū)分焦面和離焦區(qū)域來獲得層析圖像。然后再通過軸向掃描可以獲取樣品不同深度的焦面圖像,重建樣品的三維結(jié)構(gòu)。多光子顯微鏡,突破生物組織成像深度,洞察細(xì)胞間的奧秘。美國多光子顯微鏡配置

美國多光子顯微鏡配置,多光子顯微鏡

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學(xué)切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認(rèn)識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關(guān)的MPM技術(shù)。想要將神經(jīng)元活動與復(fù)雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。美國多光子顯微鏡配置目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。

美國多光子顯微鏡配置,多光子顯微鏡

雙光子熒光顯微成像主要有以下優(yōu)點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發(fā)光,對細(xì)胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器,提高了熒光收集率。收集效率提高直接導(dǎo)致圖像對比度提高。f.對探測光路的要求低。由于激發(fā)光與發(fā)射熒光的波長差值加大以及自發(fā)的三維濾波效果,多光子顯微鏡對光路收集系統(tǒng)的要求比單光子共焦顯微鏡低得多,光學(xué)系統(tǒng)相對簡單。g.適合多標(biāo)記復(fù)合測量。許多染料熒光探針的多光子激發(fā)光譜要比單光子激發(fā)譜寬闊,這樣,可以利用單一波長的激發(fā)光同時激發(fā)多種染料,從而得到同一生命現(xiàn)象中的不同信息,便于相互對照、補充。

隨著現(xiàn)代分子生物學(xué)技術(shù)的快速發(fā)展和科學(xué)技術(shù)的進步,特別是后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,這為在體內(nèi)研究基因表達(dá)、分子間相互作用、細(xì)胞增殖、細(xì)胞信號轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡和新生血管生成提供了良好的生物學(xué)條件。然而,盡管利用現(xiàn)有的分子生物學(xué)方法對基因表達(dá)與蛋白質(zhì)的相互作用進行了深入細(xì)致的研究,但仍然無法實現(xiàn)對蛋白質(zhì)和基因活性的實時動態(tài)監(jiān)測。在細(xì)胞的生理過程中,基因尤其是蛋白質(zhì)的表達(dá)、修飾和相互作用往往是可逆的、動態(tài)變化的。目前,分子生物學(xué)方法無法捕捉到蛋白質(zhì)和基因的這些變化,但獲得這些信息對于研究基因表達(dá)與蛋白質(zhì)的相互作用非常重要。因此,有必要發(fā)展一種動態(tài)、實時、連續(xù)監(jiān)測蛋白質(zhì)和基因活性的方法。滔博生物多光子顯微鏡是一種高級的顯微鏡技術(shù).

美國多光子顯微鏡配置,多光子顯微鏡

多束掃描技術(shù)可以同時對神經(jīng)元組織的不同位置進行成像對兩個遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問題,這個問題可以通過事后光源分離方法或時空復(fù)用方法來解決。事后光源分離方法指的是用算法來分離光束消除串?dāng)_;時空復(fù)用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導(dǎo)致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復(fù)用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導(dǎo)致組織損傷。世界多光子激光掃描顯微鏡產(chǎn)業(yè)主要布局在德國和日本,德國是徠卡顯微系統(tǒng)和蔡司。美國嚙齒類多光子顯微鏡長時間觀察

多光子顯微鏡,實現(xiàn)無創(chuàng)、無標(biāo)記的生物組織觀測方案。美國多光子顯微鏡配置

針對雙光子熒光顯微鏡的特點,從理論上分析雙光子成像特點,并搭建一套時間、空間分辨率高,能實時、動態(tài)、多參數(shù)測量的雙光子熒光顯微鏡系統(tǒng)。具體系統(tǒng)應(yīng)實現(xiàn)∶(1)能對不同染料的雙光子熒光進行探測;(2)用特定染料對樣品標(biāo)記以后,能實現(xiàn)雙光子熒光的三維成像;(3)通過實驗的研究,改進雙光子熒光顯微成像系統(tǒng);(4)在保證成像質(zhì)量的前提下,簡化整個系統(tǒng),使得實驗操作方便、安全。單光子激發(fā)熒光的過程,就是熒光分子吸收一個光子,從基態(tài)躍遷到激發(fā)態(tài),躍遷以后,能量較大的激發(fā)態(tài)分子,通過內(nèi)轉(zhuǎn)換把部分能量轉(zhuǎn)移給周圍的分子,自己回到比較低電子激發(fā)態(tài)的比較低振動能級。處于比較低電子激發(fā)態(tài)的比較低振動能級像在生物醫(yī)學(xué)光學(xué)成像研究中顯示了較大的優(yōu)勢。而在顯微成像中,雙光子熒光顯微鏡憑其獨有的優(yōu)點,成為研究細(xì)胞結(jié)構(gòu)和功能檢測的重要工具。美國多光子顯微鏡配置