首先,雙光子成像采用波長(zhǎng)范圍約在700~1000 nm的近紅外光激發(fā),在組織中的散射系數(shù)較小,穿透性很好,因此非常適合厚樣本的觀察。同時(shí),由于是近紅外光激發(fā),也能避免樣品中激發(fā)波長(zhǎng)較短的自發(fā)熒光物質(zhì)的干擾,可獲得較強(qiáng)的熒光信號(hào)(如下圖)。所以雙光子成像具有較深的穿透力和較小的光毒性。通常在活物腦組織中雙光子顯微鏡有效成像深度可達(dá)200~500 μm,能夠較好地進(jìn)行三維成像。雙光子成像的另一大優(yōu)勢(shì)在于精確的空間點(diǎn)聚焦性。一般條件下,物質(zhì)只會(huì)被單光子激發(fā),只有在光子密度足夠高的情況下,物質(zhì)才會(huì)吸收兩個(gè)光子從而被激發(fā),所以,雙光子只會(huì)在光子密度蕞高的物鏡焦點(diǎn)附近發(fā)生,很少產(chǎn)生焦平面外的雜散光(如下圖)。這種性質(zhì)既提高了成像質(zhì)量,也降低了樣本的光漂白、光損傷區(qū)域。基于這些優(yōu)勢(shì),使得雙光子顯微鏡非常適合對(duì)活細(xì)胞、活組織進(jìn)行長(zhǎng)時(shí)間在體成像。雙光子顯微鏡觀察到的現(xiàn)象證明了鈣離子的增加依賴于肌體觸發(fā)的鈉離子作用電勢(shì)。美國(guó)激光雙光子顯微鏡廠家
基因編碼的熒光探針可用于在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。雙光子顯微鏡(2PM)可以對(duì)鈣離子傳感器和谷氨酸傳感器進(jìn)行亞細(xì)胞分辨率的成像,從而測(cè)量不透明腦深部的活動(dòng)。成像膜的電壓變化可以直接反映神經(jīng)元的活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來說太快了。目前,電壓成像主要由寬視場(chǎng)顯微鏡實(shí)現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時(shí)間延遲的聚焦陣列。然后,該模塊被集成到一個(gè)帶有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是重復(fù)頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個(gè)脈沖焦點(diǎn),脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像。虛光源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。進(jìn)口2PPLUS雙光子顯微鏡掃描深度雙光子顯微鏡可以用于局部微蝕鐳射磨皮后的膠原重塑的檢測(cè)。
雙光子顯微鏡是一種先進(jìn)的成像技術(shù),能夠?qū)崿F(xiàn)細(xì)胞或組織的深層觀察。它的主要特點(diǎn)是使用雙光子激發(fā)來產(chǎn)生熒光,從而實(shí)現(xiàn)對(duì)生物樣品的高分辨率成像。雙光子顯微鏡的工作原理是利用激光的脈沖寬度極窄的特性,將高能激光束聚焦到生物樣品中,激發(fā)出熒光。這個(gè)過程需要使用一個(gè)特殊的雙光子激發(fā)源,它能夠?qū)⒁粋€(gè)光子轉(zhuǎn)換為兩個(gè)光子,其中一個(gè)光子用于激發(fā)熒光,另一個(gè)光子則用于成像。雙光子顯微鏡具有以下優(yōu)點(diǎn):高分辨率:由于雙光子激發(fā)的特性,可以實(shí)現(xiàn)對(duì)生物樣品的高分辨率成像,特別是對(duì)于深層組織的觀察。穿透深度大:雙光子激光的波長(zhǎng)較長(zhǎng),能夠更好地穿透生物組織,從而實(shí)現(xiàn)對(duì)深層細(xì)胞的觀察。熒光壽命長(zhǎng):雙光子激發(fā)產(chǎn)生的熒光壽命比單光子激發(fā)產(chǎn)生的熒光壽命長(zhǎng),這使得雙光子顯微鏡能夠更好地區(qū)分不同的熒光標(biāo)記物。減少光毒性:由于雙光子激發(fā)的能量較低,因此對(duì)生物樣品的損傷較小,可以減少光毒性。總之,雙光子顯微鏡是一種非常有用的成像技術(shù),可以用于生物學(xué)、醫(yī)學(xué)、材料科學(xué)等領(lǐng)域的研究。
配合雙光子激發(fā)技術(shù),激光共聚掃描顯微鏡則能更好得發(fā)揮功效。那么,什么是雙光子激發(fā)技術(shù)呢?在高光子密度的情況下,熒光分子可以同時(shí)吸收2個(gè)長(zhǎng)波長(zhǎng)的光子使電子躍遷到較高能級(jí),經(jīng)過一個(gè)很短的時(shí)間后,電子再躍遷回低能級(jí)同時(shí)放出一個(gè)波長(zhǎng)為長(zhǎng)波長(zhǎng)一半的光子(P=h/λ)。利用這個(gè)原理,便誕生了雙光子激發(fā)技術(shù)。雙光子顯微鏡使用長(zhǎng)波長(zhǎng)脈沖激光,通過物鏡匯聚,由于雙光子激發(fā)需要很高的光子密度,而物鏡焦點(diǎn)處的光子密度是比較高的,所以只有在焦點(diǎn)處才能發(fā)生雙光子激發(fā),產(chǎn)生熒光,該點(diǎn)產(chǎn)生的熒光再次穿過物鏡,被光探頭接收,從而達(dá)到逐點(diǎn)掃描的效果。微型雙光子顯微鏡的優(yōu)勢(shì)是。
雙光子顯微鏡(2PM)可以對(duì)鈣離子傳感器和谷氨酸傳感器進(jìn)行亞細(xì)胞分辨率的成像,從而測(cè)量不透明腦深部的活動(dòng)。成像膜的電壓變化可以直接反映神經(jīng)元的活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來說太快了。目前,電壓成像主要由寬視場(chǎng)顯微鏡實(shí)現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時(shí)間延遲的聚焦陣列。然后,該模塊被集成到一個(gè)帶有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是重復(fù)頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個(gè)脈沖焦點(diǎn),脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像。虛光源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。在深度組織中以較長(zhǎng)時(shí)間對(duì)細(xì)胞成像,雙光子顯微鏡是當(dāng)前之選。國(guó)內(nèi)ultima雙光子顯微鏡磷光壽命計(jì)數(shù)
雙光子顯微鏡在各領(lǐng)域研究中已有許多成功實(shí)例。美國(guó)激光雙光子顯微鏡廠家
使用基因編碼的熒光探針可以在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。使用雙光子顯微鏡(2PM)可以以亞細(xì)胞分辨率對(duì)鈣離子傳感器和谷氨酸傳感器成像,從而測(cè)量不透明大腦深處的活動(dòng);成像膜電壓變化能直接反映神經(jīng)元活動(dòng),目前電壓成像主要通過寬場(chǎng)顯微鏡實(shí)現(xiàn),但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對(duì)膜電壓變化進(jìn)行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,美國(guó)激光雙光子顯微鏡廠家