隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結(jié)合它的特點,大致可以分成深和活兩個方面的提升。深要想讓激發(fā)激光進(jìn)入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標(biāo)本改造。關(guān)于裝置優(yōu)化,我們可以把激光束變得更細(xì),使能量更加集中,就能讓激光穿透更深。關(guān)于標(biāo)本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進(jìn)行透明化處理。一種方法是運(yùn)用某種物質(zhì)將標(biāo)本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運(yùn)用電泳將脂質(zhì)電解,讓標(biāo)本“透明度”提高。高光子密度帶來的高能量容易損傷細(xì)胞,所以雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖達(dá)到最大值所持續(xù)的周期只有十萬億分之一秒,而其頻率可以達(dá)到80至100兆赫,這樣即能達(dá)到雙光子激發(fā)的高光子密度要求,又能不損傷細(xì)胞,使掃描能更好地進(jìn)行。雙光子顯微鏡使用的是高能量鎖模脈沖器。國內(nèi)激光熒光雙光子顯微鏡授權(quán)公司
從雙光子的原理和特點我們就可以明顯的得出雙光子的優(yōu)點:☆光損傷?。河捎陔p光子顯微鏡使用的是可見光或近紅外光作為激發(fā)光源,這一波段的光對***細(xì)胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強(qiáng):相對于紫外光,可見光和近紅外光都具有更強(qiáng)的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質(zhì)的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內(nèi);☆漂白區(qū)域?。河捎诩ぐl(fā)只存在于交點處,所以焦點以外的區(qū)域都不會發(fā)生光漂白現(xiàn)象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器(共焦***),這樣就提高了對熒光的收集率,而收集率的提高直接導(dǎo)致圖像對比度的提高;☆圖像對比度高:由于熒光波長小于入射波長,因而瑞利散射產(chǎn)生的背景噪聲只有單光子激發(fā)時的1/16,較大降低了散射的干擾;☆光子躍遷具有很強(qiáng)的選擇激發(fā)性,所以可以對生物組織中一些特殊物質(zhì)進(jìn)行成像研究;國外激光雙光子顯微鏡商家電話雙光子顯微鏡還可以對一些具有雙光子特性的染料細(xì)胞進(jìn)行特定實驗;
雙光子熒光顯微鏡是結(jié)合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)的一種新技術(shù)。雙光子激發(fā)的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙(多)光子成像優(yōu)勢在于,具有更深的組織穿透深度,利用紅外光,能夠在層面檢測極限達(dá)1mm的組織區(qū)域;因信號背景比高,而具有更高的對比度;因激發(fā)體積小,具有定點激發(fā)的特性,具有更少的光毒性;激發(fā)波長由紫外、可見光調(diào)整為紅外激發(fā),能夠更加地安全。
n摻雜可以明顯影響碳點(CDs)的發(fā)射和激發(fā)特性,使雙光子碳點(TP-CDs)具有本征雙光子激發(fā)特性和605nm紅光發(fā)射特性。在638nm激光的照射下,除了長波激發(fā)和發(fā)射外,還能產(chǎn)生活性氧,這為光動力技術(shù)提供了極大的可能性。更重要的是,各種表征和理論模擬證實了摻雜誘導(dǎo)的N雜環(huán)在TP-CDs與RNA的親和力中起著關(guān)鍵作用。這種親和力不僅可以實現(xiàn)核仁特異性的自我靶向,還可以通過ROS斷裂RNA鏈來解離TP-CDs@RNA復(fù)合物,從而在治療過程中產(chǎn)生熒光變化。TP-CDs結(jié)合了ROS產(chǎn)生的能力、PDT過程中的熒光變化、長波激發(fā)和發(fā)射特性以及核仁特異性自靶向性,因此可以認(rèn)為是一種實時處理核仁動態(tài)變化的智能CDs。雙光子顯微鏡使用高能量鎖模脈沖激光器。
隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結(jié)合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發(fā)激光進(jìn)入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標(biāo)本改造。關(guān)于裝置優(yōu)化,我們可以把激光束變得更細(xì),使能量更加集中,就能讓激光穿透更深。關(guān)于標(biāo)本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進(jìn)行透明化處理。一種方法是運(yùn)用某種物質(zhì)將標(biāo)本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運(yùn)用電泳將脂質(zhì)電解,讓標(biāo)本的“透明度”得到提高。雙光子顯微鏡成像技術(shù)及不同轉(zhuǎn)基因小鼠開展對多種臟器的成像研究。國外ultima雙光子顯微鏡光子躍遷
雙光子顯微鏡使用長波長脈沖光,是通過物鏡匯聚的。國內(nèi)激光熒光雙光子顯微鏡授權(quán)公司
其實電子顯微鏡相比于光學(xué)顯微鏡的重要優(yōu)勢或者存在的比較大意義,準(zhǔn)確的來說,不在于放大倍數(shù),而在于超高的分辨率。這兩者是不同的。通俗的來說,就是進(jìn)行觀察的時候,除了要將物體放大,還需要能將它與相鄰的其他物體分辨開來。如果兩個相鄰微粒的圖像在光學(xué)顯微鏡下,即使放大到很大,看到的可能卻是兩個相交的亮斑(艾里斑),而沒有明顯的界限(更不用說細(xì)節(jié)了),這表示是分辨率不夠。拋開分辨率談放大倍數(shù)是沒有意義的。光學(xué)顯微鏡的分辨率極限是阿貝極限,約等于光波波長的一半,通常被說成是光學(xué)顯微鏡放大極限,其實準(zhǔn)確地來說,應(yīng)該叫做分辨率的極限。而其產(chǎn)生的原因是光的衍射,根本原因是光的波粒二象性。電子衍射實驗證明了電子的波動性,于是用電子代替光的電子顯微鏡成為可能。電子顯微鏡也有多種,題主說的是像REM的。電鏡也存在用衍射規(guī)則觀察的,比如低能電子衍射(LEED)和透射電鏡(TEM)。兩者主要用于觀察晶體,根據(jù)其周期性的特點而生成倒易空間里的衍射圖像,借助elward球或者傅里葉變換就可以轉(zhuǎn)換到實空間,得到真正的晶體表面圖像了。 國內(nèi)激光熒光雙光子顯微鏡授權(quán)公司