你是否也曾一個(gè)個(gè)的將圖像添加標(biāo)簽進(jìn)行分類,如此機(jī)械式的操作令你心煩?你們單位是否也曾為了不多不少的圖像分類標(biāo)注而不得不增加一個(gè)崗位?你們也是否因圖像標(biāo)注需求和數(shù)據(jù)安全不可兼得而苦惱?為了解決這一市場(chǎng)需求和困境,慧視光電研發(fā)了SpeedDP深度學(xué)習(xí)算法開發(fā)平臺(tái),如今平臺(tái)已經(jīng)實(shí)現(xiàn)移動(dòng)端使用,可運(yùn)行于Windows或Linux操作系統(tǒng),可完成自動(dòng)標(biāo)注、AI算法開發(fā)(項(xiàng)目配置、訓(xùn)練、評(píng)估、測(cè)試)、模型部署等相關(guān)功能,充分保證數(shù)據(jù)安全的基礎(chǔ)上,幫助使用者減少人力、物力消耗,節(jié)省開發(fā)時(shí)間。人工智能和機(jī)器學(xué)習(xí)技術(shù),還可以幫助提高建筑工地的安全性并降低風(fēng)險(xiǎn)。河南智慧園區(qū)AI智能煙霧識(shí)別
慧視SpeedDP深度學(xué)習(xí)算法開發(fā)平臺(tái)采用標(biāo)準(zhǔn)的AI開發(fā)流程,即需求分析->數(shù)據(jù)采集標(biāo)注->模型訓(xùn)練->測(cè)試驗(yàn)證->模型部署。實(shí)際操作部分可分為如下五個(gè)模塊:數(shù)據(jù)集管理:采集并制作用于訓(xùn)練和測(cè)試的數(shù)據(jù)集;項(xiàng)目配置:根據(jù)項(xiàng)目的實(shí)際情況,對(duì)調(diào)整相關(guān)配置參數(shù)進(jìn)行定制化開發(fā);模型訓(xùn)練:完成訓(xùn)練參數(shù)配置,開始模型訓(xùn)練并監(jiān)控訓(xùn)練過程,損失精度??山邮軙r(shí),暫停訓(xùn)練;模型測(cè)試:使用數(shù)據(jù)集或?qū)嶋H業(yè)務(wù)場(chǎng)景圖像視頻數(shù)據(jù)進(jìn)行模型評(píng)估;模型部署:模型測(cè)試結(jié)果達(dá)到預(yù)期,進(jìn)行模型轉(zhuǎn)化和部署。慧視光電SpeedDP深度學(xué)習(xí)算法開發(fā)平臺(tái)主要針對(duì)一些數(shù)據(jù)需要保密、同時(shí)又有AI算法開發(fā)能力的單位、AI算法軟件公司等,縮短算法的開發(fā)、優(yōu)化、部署周期,同時(shí)減少人員的消耗,達(dá)到降本增效的目的。四川AI智能算法分析AI自動(dòng)圖像標(biāo)注平臺(tái)SpeedDP。
圖像識(shí)別以圖像處理為基礎(chǔ),是指以圖像為對(duì)象所開展的各種處理性工作,包括編碼、壓縮、復(fù)原及分割等。圖像處理過程中,以圖像輸入后,一般情況下也會(huì)通過圖像形態(tài)進(jìn)行輸出。在圖像識(shí)別過程中,將處理后的圖像輸入,一般情況下輸出類別與圖像結(jié)構(gòu)分析。也就是說,圖像識(shí)別是一個(gè)自原始圖像到物體類型的過程,原始圖像經(jīng)過圖像處理后,抽取特征并加以分類對(duì)比,以圖像樣本庫(kù)資源作為對(duì)比分析的參考依據(jù),然后確定物體類型。從本質(zhì)上來講,可以將圖像識(shí)別看作是對(duì)圖像分類與描述進(jìn)行研究的過程。在圖像識(shí)別過程中,在對(duì)圖像中物體進(jìn)行檢測(cè)分離之后,將物體特征提取出來,以形狀、紋理特征等作為提取對(duì)象,一般將圖像處理融入到圖像特征提取環(huán)節(jié)中。待對(duì)比分析明確物體類型后,從結(jié)構(gòu)層面上對(duì)圖像進(jìn)行分析。
圖像識(shí)別技術(shù)的高價(jià)值應(yīng)用就發(fā)生在你我身邊,例如視頻監(jiān)控、自動(dòng)駕駛和智能醫(yī)療等,而這些圖像識(shí)別進(jìn)展的背后推動(dòng)力是深度學(xué)習(xí)。深度學(xué)習(xí)的成功主要得益于三個(gè)方面:大規(guī)模數(shù)據(jù)集的產(chǎn)生、強(qiáng)有力的模型的發(fā)展以及可用的大量計(jì)算資源。對(duì)于各種各樣的圖像識(shí)別任務(wù),精心設(shè)計(jì)的深度神經(jīng)網(wǎng)絡(luò)已經(jīng)遠(yuǎn)遠(yuǎn)超越了以前那些基于人工設(shè)計(jì)的圖像特征的方法。盡管到目前為止深度學(xué)習(xí)在圖像識(shí)別方面已經(jīng)取得了巨大成功,但在它進(jìn)一步廣泛應(yīng)用之前,仍然有很多挑戰(zhàn)需要我們?nèi)ッ鎸?duì)。慧視RK3399圖像處理板能實(shí)現(xiàn)24小時(shí)、無間隙信息化監(jiān)控。
2023年,全球科技領(lǐng)域受歡迎的當(dāng)屬AI行業(yè),原以為進(jìn)入2024會(huì)沉寂一段時(shí)間,不聊Sora文生視頻大模型的發(fā)布又將這一熱度延續(xù)到了2024。AI+行業(yè)的持續(xù)火熱,為我國(guó)AI圖像處理板的發(fā)展應(yīng)用提供了契機(jī)。我們所熟知的人形機(jī)器人在當(dāng)今已有重要突破,它們已經(jīng)不再像以前那樣只能進(jìn)行簡(jiǎn)單的直立行走,進(jìn)行生硬的對(duì)話,隨著AI和其他傳感技術(shù)的不斷進(jìn)步,人形機(jī)器人已經(jīng)可以在一些重要行業(yè)替代人工進(jìn)行工作,其中就有制造業(yè)、危險(xiǎn)化學(xué)品行業(yè)等,機(jī)器人的應(yīng)用能夠有效節(jié)約人力成本,同時(shí),機(jī)器人還能夠進(jìn)行人不能涉及的危險(xiǎn)領(lǐng)域。而人形機(jī)器人之所以能夠有此作用,就是跟機(jī)器視覺有關(guān)。RK3399圖像處理板識(shí)別概率超過85%。陜西深度學(xué)習(xí)AI智能應(yīng)用
智能化的圖像處理板還可以實(shí)現(xiàn)自動(dòng)化的數(shù)據(jù)分析,實(shí)現(xiàn)降本增效。河南智慧園區(qū)AI智能煙霧識(shí)別
人臉識(shí)別始于20世紀(jì)60年代,隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,以美國(guó)、日本和德國(guó)的技術(shù)為主。隨著人工智能的發(fā)展以及處理的快速迭代更新,人臉識(shí)別技術(shù)也獲得了很大的突破,同時(shí)人臉識(shí)別也是生物特征的應(yīng)用。其技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。總的來說,人臉識(shí)別的原理是收集用戶的面部數(shù)據(jù)存入數(shù)據(jù)庫(kù),然后進(jìn)行機(jī)器學(xué)習(xí),通過采集需要解鎖對(duì)象的面部數(shù)據(jù),放進(jìn)數(shù)據(jù)庫(kù)進(jìn)行比對(duì),然后完成解鎖。河南智慧園區(qū)AI智能煙霧識(shí)別