相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現(xiàn)了檢測的過程。在訓(xùn)練分類器時,一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本。回顧前面提到的TLD或Struck,他們都會在每一幀中隨機地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機子窗口的特征,而CSK作者設(shè)計了一個密集采樣的框架,能夠?qū)W習(xí)到一個區(qū)域內(nèi)所有圖像塊的特征。RV1126搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤??孔V的目標(biāo)跟蹤誠信推薦
YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進(jìn)行目標(biāo)檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實時應(yīng)用。準(zhǔn)確性較高:通過引入先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標(biāo)定位和類別預(yù)測方面具有較高的準(zhǔn)確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標(biāo),并保持對小目標(biāo)的有效檢測。端到端訓(xùn)練:YOLO算法可以進(jìn)行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實現(xiàn)和使用。貴州專業(yè)目標(biāo)跟蹤RK3588處理板,智慧視覺應(yīng)用開發(fā)板。
人工智能起源于上個世紀(jì)五十年代,被譽為新時代工業(yè)發(fā)展的引擎。隨著技術(shù)的發(fā)展,為了使得計算機可以擁有像人眼一樣感知、分析、處理現(xiàn)實世界的能力,六十年代初,人工智能衍生出了一個重要的分支,計算機視覺。在計算機視覺的研究過程中,學(xué)者們?yōu)榱岁U述“根據(jù)目標(biāo)在視頻中的某一幀狀態(tài)來估計其在后續(xù)幀中的狀態(tài)”,一個新的學(xué)科——目標(biāo)跟蹤應(yīng)運而生。目標(biāo)跟蹤是計算機視覺和機器人研發(fā)領(lǐng)域的重要分支,在人機交互、安全監(jiān)控、自動駕駛、城市交通、軍領(lǐng)域、醫(yī)療診斷等領(lǐng)域都發(fā)揮了重要的作用,其主要功能就是在視頻圖像中遍歷感興趣的區(qū)域,并在接下來的視頻幀中對其進(jìn)行跟蹤
如今,無人機在我們生活中的應(yīng)用越來越廣。例如無人機巡檢安防領(lǐng)域,無人機能夠到達(dá)人無法觸及的一些角度,能夠很大程度上擴大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機都是可見光相機,在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。RK3588作為工業(yè)級圖像處理板能夠進(jìn)行大量的目標(biāo)識別信息處理。
近年來,我國多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車方面,許多公共場所也開始逐步落地應(yīng)用。一車一桿的系統(tǒng),智能識別進(jìn)出入車輛,控制車輛進(jìn)出入,統(tǒng)計車位空缺數(shù),在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機箱,該機箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。成都慧視的跟蹤版是國產(chǎn)化的!專業(yè)目標(biāo)跟蹤要多少錢
慧視微型雙光吊艙能夠?qū)崿F(xiàn)晝夜成像??孔V的目標(biāo)跟蹤誠信推薦
跟蹤任務(wù)與檢測任務(wù)有著密切的關(guān)系。從輸入輸出的形式上來看,這兩個任務(wù)是極為相似的。它們均以圖片(或者視頻幀)作為模型的輸入,經(jīng)過處理后,輸出一堆目標(biāo)物置的矩形框。它們之間比較大的區(qū)別體現(xiàn)在對“目標(biāo)物體”的定義上。對于檢測任務(wù)來說,目標(biāo)物體屬于預(yù)先定義好的某幾個類別,如圖1左圖所示;而對于跟蹤任務(wù)來說,目標(biāo)物體指的是在首幀中所指定的跟蹤個體,如圖1右圖所示。實際上,如果我們將每一個跟蹤的個體當(dāng)成是一個類別的話,跟蹤任務(wù)甚至能被當(dāng)成是一種特殊的檢測任務(wù),稱為個體檢測(Instance Detection)??孔V的目標(biāo)跟蹤誠信推薦