增材制造技術能夠簡化光學器件的制造流程,縮短交貨期并降低材料消耗。更重要的是,增材制造技術能夠?qū)崿F(xiàn)功能集成的優(yōu)化設計方案,尤其在衛(wèi)星光學系統(tǒng)制造領域,增材制造技術能夠滿足用戶對輕型光學系統(tǒng)不斷增長的需求,并實現(xiàn)下一代高附加值光學器件的制造。通過增材制造技術開發(fā)的下一代光學儀器中,將越來越多采用緊湊的功能集成設計,如集成隔熱,冷卻通道,局限的機械和熱接口,以及將光學功能作為設備自身結構的一部分。緊湊集成化設計減少了組件裝配過程中出現(xiàn)問題的風險,同時開辟了制造冷卻光學系統(tǒng),有源光學系統(tǒng)或自由曲面的新方式。陶瓷增材制造技術的凈成形能力,還能夠提高準確性,改善集成/結合過程的質(zhì)量。在成就高附加值零件方面,3D打印的應用還包括很多,除了打印極度復雜的結構、打印混合材料,3D打印因為技術種類繁多也帶來了高附加值零件的創(chuàng)新空間,例如3D打印感應器、3D打印多層電路、3D打印電池等等。Nanoscribe作為全球納米制造和精密制造用高精度3D打印制造商,在科研和工業(yè)領域有眾多用戶,包括哈佛大學納米系統(tǒng)中心,加州理工學院,倫敦帝國理工學院,蘇黎世聯(lián)邦理工大學等。 走進Nanoscribe在中國的子公司納糯三維科技(上海)有限公司學習增材制造技術。廣東微機械增材制造設備
全新Glass Printing Explorer Set是Nanoscribe公司推出的頭一個用于熔融石英玻璃微納結構3D微納加工的商用高精度增材制造工藝和材料。新型光刻膠GP-Silica是Glass Printing Explorer Set的中心內(nèi)容,也是世界上只有的一款用于熔融石英玻璃微納加工的光刻膠。這種打印材料因其高光透性,出色的熱穩(wěn)性,機械性能和化學穩(wěn)定性脫穎而出。這為探索生命科學,微流控,微納光學,材料工程和其他微納技術領域的新應用開辟了更多可能性。The Glass Printing Explorer Set拓寬了注重耐高溫特性,化學和機械穩(wěn)定性以及光透性的高精度3D微納加工應用。雙光子聚合技術(2PP)的高精度結合熔融石英玻璃的出色玻璃性能,推動者生命科學,微流控,微納光學及其他領域新應用的發(fā)展和探索。“盡管所需的后期熱處理要求很高,GP-Silica在我們研究制造復雜的微流體系統(tǒng)方面具有巨大的潛力?!比鹗扛ダ锉ご髮W工程與建筑學院助理教授兼圖像打印系主任Nicolas Muller博士總結道。廣東微機械增材制造設備增材制造技術是一種三維實體快速自由成形制造新技術。
3D打印公司Nanoscribe早期是德國卡爾斯魯厄理工學院的分支機構,自此成為全球市場的高精度,微型3D打印技術和微光解決方案的提供商。德國3D打印公司Nanoscribe正在使用其Photonic Professional GT 3D打印機來制造包括標準折射微光學,自由光學元件,衍射光學元件和多透鏡系統(tǒng)在內(nèi)的微光學形狀。德國增材制造公司表示,“將 3D打印技術 與用戶友好的軟件和創(chuàng)新材料相結合,導致可重復的精益流程”,使客戶能夠“克服當前的技術障礙”。 Nanoscribe使用其Photonic Professional GT 3D打印機,近期展示了如何使用雙光子聚合工藝生產(chǎn)各種微光學形狀。這些Photonic Professional GT 3D打印機據(jù)稱提供具有光學質(zhì)量表面光潔度的亞微米特征,以及沿著3D打印工作流程的快速制作。
激光增材制造(LAM)屬于以激光為能量源的增材制造技術,能夠徹底改變傳統(tǒng)金屬零件的加工模式,主要分為以粉床鋪粉為技術特征的激光選區(qū)熔化(SLM)、以同步送粉為技術特征的激光直接沉積(LDMD)。目前LAM技術在航空、航天和醫(yī)療領域的應用發(fā)展特別迅速。鑒于相關領域主要涉及金屬結構制造,我們重點開展金屬LAM技術的發(fā)展研究。隨著金屬零件使用性能和結構復雜程度的提高,采用鑄造、鍛造等傳統(tǒng)工藝實施制造的難度、成本和周期迅速增加,而兼具技術先進性和資源經(jīng)濟性的LAM技術為高性能、復雜結構制造提供了新型解決方案:實現(xiàn)拓撲優(yōu)化結構、點陣結構、梯度材料結構、復雜內(nèi)部流道結構等不再困難,結構功能一體化、輕量化、韌性非常強、耐極端載荷、強散熱等新型結構得以應用,相應結構效能大幅提高。例如,美國通用電氣公司(GE)SLM航空發(fā)動機燃油噴嘴、北京航空航天大學LDMD飛機鈦合金框是典型應用案例。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司邀您一起探討增材制造技術的運用。
Nanoscribe成立于2007年,作為卡爾斯魯厄理工學院研究小組的分拆,目前,Nanoscribe已經(jīng)成為納米和微米3D打印的出名企業(yè),并且在許多項目上都有所作為。Nanoscribe的激光光刻系統(tǒng)用于3D打印世界上特別小的強度高的3D晶格結構,它使用高精度激光來固化光刻膠中具有小至千分之一毫米特征的結構。換句話說,激光使基于液體的材料的小液滴內(nèi)部的特定層硬化。為了進一步適應日益增長的業(yè)務,Nanoscribe還宣布將把設施搬遷到KIT投資3000萬歐元的蔡司創(chuàng)新中心。此舉將于2019年底舉行,將有助于推動微型3D打印領域的更多創(chuàng)新。Hermatschweiler補充說:“通過這個創(chuàng)新中心能夠與KIT靠的更近,卡爾斯魯厄不斷為Nanoscribe等公司提供創(chuàng)新和成功發(fā)展的理想環(huán)境?!監(jiān)RNL的科學家們使用Nanoscribe的增材制造系統(tǒng)來構建世界上特別小的指尖陀螺,該迷你玩具的寬度只為100微米(與人類頭發(fā)的寬度相當)。除了用于無線技術,Nanoscribe的3D打印技術還可用于制造高精度的光學微透鏡,衍射光學元件,用于生物打印的納米級支架等等。 Nanoscribe在中國的子公司納糯三維科技(上海)有限公司為您深度解讀增材制造技術。廣東微機械增材制造設備
Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解增材制造的主要特性和測試方法。廣東微機械增材制造設備
Nanoscribe是非常獨特的納米和微米級3D打印技術。該公司成立于2007年,目前已經(jīng)在激光光刻行業(yè)處于領頭的地位。Nanoscribe公司的Photonic Professional GT光刻系統(tǒng)主要通過在微尺度上運用激光來固化感光材料。3D打印材料主要包括液態(tài)的光敏材料和固態(tài)的旋涂光刻材料。憑著其獨特的微尺度3D 打印技術與人性化的軟件,Nanoscribe毫無疑問是增材制造領域里的一股顛覆性力量。ORNL的科學家們使用Nanoscribe的增材制造系統(tǒng)來構建世界上特別小的指尖陀螺, 該迷你玩具的寬度只為100微米(與人類頭發(fā)的寬度相當)。除了用于無線技術,Nanoscribe的3D打印技術還可用于制造高精度的光學微透鏡,衍射光學元件,用于生物打印的納米級支架等等。廣東微機械增材制造設備