基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理單元***連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的**系統(tǒng)與ANN的結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經(jīng)網(wǎng)絡與**系統(tǒng)的結合。電機健康管理是基于各類數(shù)據(jù)監(jiān)測和故障預測對設備完好性、可用性的評估和控制。上海專業(yè)監(jiān)測
故障診斷可以使系統(tǒng)在一定工作環(huán)境下根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預測狀態(tài)劣化的發(fā)展趨勢等。電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監(jiān)測,電機的溫升與各種故障現(xiàn)象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產(chǎn)生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。溫州NVH監(jiān)測介紹監(jiān)測系統(tǒng)利用不同工況下輔助數(shù)據(jù)所蘊含的故障發(fā)生模式信息, 提高在線環(huán)境下時序異常檢測精度。
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)?;透呒夹g技術含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產(chǎn)設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產(chǎn)生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產(chǎn)生前制訂預知性維修計劃,確定設備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。
著科技發(fā)展,各類工程設備的工作和運行環(huán)境變得越來越復雜.作為機械設備的關鍵零部件,滾動軸承在長期大載荷、強沖擊等復雜工況下,極易產(chǎn)生各種故障,導致機械工作狀況惡化.針對軸承的故障預測與健康管理(Prognosticsandhealthmanagement,PHM)技術應運而生.若能在故障發(fā)生初期即進行準確、可靠的檢測和診斷,則有助于進行及時維修,避免嚴重事故的發(fā)生.早期故障監(jiān)測已成為PHM的關鍵技術環(huán)節(jié)之一.近年來,隨著傳感技術和機器學習技術的快速發(fā)展,數(shù)據(jù)驅(qū)動的智能化故障監(jiān)測和診斷技術受到***關注.如何利用歷史采集的狀態(tài)監(jiān)控數(shù)據(jù)、提高目標軸承早期故障檢測結果的準確性和穩(wěn)定性成為研究熱點和難點,具有明確的學術價值和應用需求.電機故障監(jiān)測是一種基于深度遷移學習的早期故障在線檢測方法。
深度學習技術已在滾動軸承故障監(jiān)測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監(jiān)測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發(fā), 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數(shù), 在自適應提取不同域數(shù)據(jù)的公共特征表示同時, 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態(tài)的排列熵值構建報警閾值, 實現(xiàn)在線數(shù)據(jù)中異常序列的快速匹配, 同時提高在線檢測結果的可靠性. 在XJTU-SY數(shù)據(jù)集上的實驗結果表明, 與現(xiàn)有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數(shù).盈蓓德科技順應行業(yè)發(fā)展趨勢,搭建了一套基于旋轉(zhuǎn)類設備溫度,振動狀態(tài)監(jiān)測、故障判斷和預測性維護系統(tǒng)。溫州減振監(jiān)測系統(tǒng)
時間域、頻率域以及角度域的NVH分析方法,可以對汽車動力總成的各種故障進行實時識別、監(jiān)測和診斷。上海專業(yè)監(jiān)測
刀具切削狀態(tài)的實時監(jiān)測與管理也是實現(xiàn)制造系統(tǒng)現(xiàn)代化、自動化、柔性化的基礎。出現(xiàn)于90年代的智能刀具技術受到越來越多的關注,并在近20年來得到迅速發(fā)展。精確地預報刀具在加工中,尤其是在制造成本極高的精密零件加工中的失效時間對提高零件的加工效率和質(zhì)量、減少生產(chǎn)成本及研制周期具有重要意義。日本京瓷工業(yè)陶瓷公司提出一種裝有磨損傳感器的可轉(zhuǎn)位刀片刀具壽命診斷系統(tǒng)。這種智能刀具系統(tǒng)采用Ceratip傳感器,它在正方形的陶瓷刀片表面上,涂覆一層厚度為0.3μm的TiN,刀具在開始切削時,使裝有傳感器的刀片涂覆層通過電流,形成一微電子回路。當?shù)毒咴谇邢髁Φ淖饔孟履p時,刀片表面上的TiN涂覆層首先被破壞,這時電流不能通過裝有傳感器的刀片涂覆層(斷電),用電表測量時,此處微電子回路的電阻變?yōu)闊o限大。這時裝在刀片上的傳感器,將立即向機床控制系統(tǒng)發(fā)出信號,由機床控制系統(tǒng)控制機床立刻停機并執(zhí)行自動換刀程序。這種刀具壽命診斷系統(tǒng)能直接測量出刀尖的磨損情況并快速、準確地預報刀具的失效時間。上海專業(yè)監(jiān)測
上海盈蓓德智能科技有限公司是一家集研發(fā)、制造、銷售為一體的****,公司位于上海市閔行區(qū)新龍路1333號28幢328室,成立于2019-01-02。公司秉承著技術研發(fā)、客戶優(yōu)先的原則,為國內(nèi)智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)的產(chǎn)品發(fā)展添磚加瓦。公司主要經(jīng)營智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等產(chǎn)品,產(chǎn)品質(zhì)量可靠,均通過電工電氣行業(yè)檢測,嚴格按照行業(yè)標準執(zhí)行。目前產(chǎn)品已經(jīng)應用與全國30多個省、市、自治區(qū)。盈蓓德,西門子為用戶提供真誠、貼心的售前、售后服務,產(chǎn)品價格實惠。公司秉承為社會做貢獻、為用戶做服務的經(jīng)營理念,致力向社會和用戶提供滿意的產(chǎn)品和服務。上海盈蓓德智能科技有限公司以市場為導向,以創(chuàng)新為動力。不斷提升管理水平及智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產(chǎn)品質(zhì)量。本公司以良好的商品品質(zhì)、誠信的經(jīng)營理念期待您的到來!