新品速遞|VINNASI?2728:乳膠粉領(lǐng)域的得力助手
銷售無(wú)錫市水性環(huán)氧樹(shù)脂廠家批發(fā)無(wú)錫洪匯新材料科技供應(yīng)
銷售無(wú)錫市水性樹(shù)脂廠家報(bào)價(jià)無(wú)錫洪匯新材料科技供應(yīng)
供應(yīng)無(wú)錫市環(huán)氧乳液批發(fā) 無(wú)錫洪匯新材料科技供應(yīng)
聚氯乙烯乳液在家居產(chǎn)品中的作用
洪匯新材-如何制備水性環(huán)氧防腐涂料
洪匯新材攜水性產(chǎn)品亮2021中國(guó)涂料峰會(huì)暨展覽會(huì)
洪匯新材精彩亮相第七屆國(guó)際水性工業(yè)涂料涂裝技術(shù)峰會(huì)
智能船舶是指基于“網(wǎng)絡(luò)平臺(tái)”的信息技術(shù)應(yīng)用,以“大數(shù)據(jù)”為基礎(chǔ),通過(guò)數(shù)據(jù)分析和數(shù)據(jù)處理,實(shí)現(xiàn)運(yùn)行船舶的智能感知、判斷分析和決策控制,從技術(shù)、設(shè)備、管理等多個(gè)層面保證船舶航行的安全和效率,大幅減少甚至杜絕人為或外部因素造成的各種事故。其主要目標(biāo)就是安全、經(jīng)濟(jì)、高效、環(huán)保。而智能機(jī)艙是通過(guò)綜合狀態(tài)監(jiān)測(cè)系統(tǒng)所獲得的設(shè)備信息和數(shù)據(jù),實(shí)現(xiàn)對(duì)機(jī)艙內(nèi)機(jī)械設(shè)備的運(yùn)行狀態(tài)、健康狀況進(jìn)行分析和評(píng)估,進(jìn)而完成設(shè)備操作輔助決策和維護(hù)保養(yǎng)計(jì)劃的綜合管控系統(tǒng)。它能及時(shí)地、準(zhǔn)確地對(duì)多種異常狀態(tài)或故障狀態(tài)做出診斷,預(yù)防或消除故障,把故障損失降低到較低水平,同時(shí)對(duì)設(shè)備的運(yùn)行進(jìn)行必要的決策支持,提高設(shè)備運(yùn)行的可靠性、安全性和有效性,也能確定設(shè)備的良好維護(hù)時(shí)間,降低設(shè)備全壽命周期費(fèi)用,增加設(shè)備的穩(wěn)定性。近日,盈蓓德成功交付了InsightlO智能監(jiān)測(cè)系統(tǒng),就是智能船舶中的智能機(jī)艙系統(tǒng),這一創(chuàng)新技術(shù)將為船舶行業(yè)帶來(lái)全新的智能化管理體驗(yàn),標(biāo)志著船舶行業(yè)智能化新篇章的開(kāi)啟。InsightlO智能監(jiān)測(cè)系統(tǒng)是盈蓓德經(jīng)過(guò)長(zhǎng)期研發(fā)和測(cè)試的成果,該系統(tǒng)能夠?qū)崟r(shí)監(jiān)測(cè)機(jī)艙設(shè)備的各項(xiàng)運(yùn)行數(shù)據(jù)。工業(yè)監(jiān)測(cè)技術(shù)可以幫助企業(yè)保障員工安全和健康。杭州降噪監(jiān)測(cè)方案
電機(jī)監(jiān)測(cè)的未來(lái)發(fā)展隨著科技的不斷進(jìn)步和工業(yè)領(lǐng)域的多樣化發(fā)展,電機(jī)監(jiān)測(cè)的方法和手段也在不斷更新和完善。未來(lái),電機(jī)監(jiān)測(cè)將更加注重智能化、自動(dòng)化和網(wǎng)絡(luò)化的發(fā)展,實(shí)現(xiàn)更加高效的監(jiān)測(cè)過(guò)程。同時(shí),隨著人工智能、大數(shù)據(jù)等技術(shù)的不斷發(fā)展,電機(jī)監(jiān)測(cè)將更加注重?cái)?shù)據(jù)分析和挖掘,為工業(yè)領(lǐng)域提供更加全、深入的監(jiān)測(cè)服務(wù)。此外,隨著環(huán)保要求的提高和新能源汽車的快速發(fā)展,電機(jī)監(jiān)測(cè)也將更加注重環(huán)保性能和新能源兼容性的測(cè)試??傊姍C(jī)監(jiān)測(cè)是保障設(shè)備安全與性能的關(guān)鍵技術(shù)。通過(guò)對(duì)電機(jī)進(jìn)行實(shí)時(shí)監(jiān)測(cè),可以及時(shí)發(fā)現(xiàn)潛在的問(wèn)題和故障,為消費(fèi)者提供安全、可靠的工業(yè)產(chǎn)品。同時(shí),隨著科技的不斷進(jìn)步和工業(yè)領(lǐng)域的多樣化發(fā)展,電機(jī)監(jiān)測(cè)的方法和手段也在不斷更新和完善,為工業(yè)領(lǐng)域的發(fā)展提供了有力支持。南京產(chǎn)品質(zhì)量監(jiān)測(cè)臺(tái)工業(yè)監(jiān)測(cè)系統(tǒng)可以預(yù)測(cè)設(shè)備的故障并提前進(jìn)行維修。
隨著電力電子技術(shù)、自動(dòng)化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了應(yīng)用,在市場(chǎng)競(jìng)爭(zhēng)中正逐步顯示自己的優(yōu)勢(shì)。傳統(tǒng)的電機(jī)在線監(jiān)測(cè)裝置多采用電流表、電壓表、功率表等較為原始的儀表來(lái)進(jìn)行測(cè)量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測(cè)量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測(cè)試結(jié)果不準(zhǔn)確。有些場(chǎng)合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測(cè),這樣就勢(shì)必會(huì)加大各種測(cè)量?jī)x器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測(cè)方法要求監(jiān)測(cè)人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測(cè)方法無(wú)法做定量分析,無(wú)法更加準(zhǔn)確、實(shí)時(shí)掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測(cè)裝置和方法,通過(guò)對(duì)扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、功率和效率進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)以及對(duì)過(guò)電壓、過(guò)電流、過(guò)熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測(cè)參數(shù)不能定量分析以及無(wú)法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問(wèn)題。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。工業(yè)監(jiān)測(cè)檢測(cè)技術(shù)不斷發(fā)展,利用先進(jìn)的傳感器和數(shù)據(jù)分析技術(shù),可以實(shí)現(xiàn)自動(dòng)化、智能化的監(jiān)測(cè)檢測(cè)。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A抗I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。監(jiān)測(cè)工作需要關(guān)注市場(chǎng)的投資環(huán)境和經(jīng)濟(jì)指標(biāo),以了解市場(chǎng)的風(fēng)險(xiǎn)和機(jī)遇。南京仿真監(jiān)測(cè)應(yīng)用
監(jiān)測(cè)結(jié)果的反饋可以幫助我們改進(jìn)產(chǎn)品和服務(wù)的質(zhì)量。杭州降噪監(jiān)測(cè)方案
通過(guò)故障機(jī)理分析可知,交流電機(jī)運(yùn)行過(guò)程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測(cè)的被測(cè)信號(hào),準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號(hào)往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測(cè)方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測(cè)量手段與信號(hào)處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測(cè)的電氣信號(hào)及振動(dòng)信號(hào)之中,如果借助于某種變換對(duì)這些信號(hào)進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號(hào)變換方法有希爾伯特變換和小波變換等。杭州降噪監(jiān)測(cè)方案