巨磁阻(GMR)效應(yīng)在微小磁場(chǎng)測(cè)量領(lǐng)域?qū)崿F(xiàn)了創(chuàng)新性的改變,尤其在利用渦流傳感器進(jìn)行無(wú)損檢測(cè)方面取得了很大的進(jìn)展。巨磁阻傳感器具有低功耗、尺寸小、高靈敏度以及頻率與靈敏度的不相關(guān)性等特點(diǎn);同霍爾傳感器相同,巨磁阻芯片是傳感器的主要組成部分,一般也容易受到環(huán)境中磁場(chǎng)的干擾,不適用于電磁環(huán)境復(fù)雜的環(huán)境,對(duì)復(fù)雜波形電流也不能做出準(zhǔn)確的檢測(cè)。磁通門(mén)傳感器(Fluxgatecurrentsensor),一開(kāi)始主要用于弱磁場(chǎng)的檢測(cè),比如地磁場(chǎng)檢測(cè)、鐵礦石檢測(cè)、位移檢測(cè)和管道泄漏檢測(cè)等方面。隨著這種技術(shù)的發(fā)展,磁通-2-門(mén)傳感器廣泛應(yīng)用于太空探測(cè)和地質(zhì)勘探中。磁通門(mén)電流傳感器的結(jié)構(gòu)類(lèi)似霍爾電流傳感器,是基于檢測(cè)磁路的飽和特性而設(shè)計(jì)的。磁通門(mén)電流傳感器采用高磁導(dǎo)率的磁芯,通過(guò)磁芯的交替飽和,產(chǎn)生的感應(yīng)電壓和被測(cè)電流之間存在著一定的數(shù)量關(guān)系,從而可以得到被測(cè)電流。它實(shí)際上檢測(cè)磁場(chǎng)的變化,通過(guò)磁與電的聯(lián)系來(lái)得到被測(cè)電流。近幾年,隨著軟磁材料的發(fā)展和電子元器件的革新,磁通門(mén)電流傳感器的性能不斷提高,其應(yīng)用范圍不斷擴(kuò)大,受到越來(lái)越多的關(guān)注。RTD 型磁通門(mén)傳感器工作時(shí),磁芯由于激勵(lì)磁場(chǎng)周期性地交替變化,磁芯處于雙向過(guò)飽和狀態(tài)。珠海閉環(huán)電流傳感器
磁通門(mén)傳感器是一種根據(jù)電磁感應(yīng)現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應(yīng)是用于對(duì)外界被測(cè)磁場(chǎng)進(jìn)行調(diào)制。它的基本原理可以由法拉第電磁感應(yīng)定律進(jìn)行解釋。磁通門(mén)傳感器是采用某些高導(dǎo)磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵(lì)線(xiàn)圈和感應(yīng)線(xiàn)圈。在激勵(lì)線(xiàn)圈中通入交變電流,則在其產(chǎn)生的激勵(lì)磁場(chǎng)的作用下,感應(yīng)線(xiàn)圈中產(chǎn)生由外界環(huán)境磁場(chǎng)調(diào)制而成的感應(yīng)電勢(shì)。該電勢(shì)包含了激勵(lì)信號(hào)頻率的各個(gè)偶次諧波分量,通過(guò)后續(xù)的各種傳感器信號(hào)處理電路,利用諧波法對(duì)感應(yīng)電勢(shì)進(jìn)行檢測(cè)處理,使得該電勢(shì)與外界被測(cè)磁場(chǎng)成正比。又因?yàn)榇磐ㄩT(mén)傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號(hào),所以該傳感器又稱(chēng)為磁飽和傳感器。與磁通門(mén)相關(guān)的技術(shù)問(wèn)世于20世紀(jì)30年代初期,首先在1931年,Thomas申請(qǐng)了關(guān)于磁通門(mén)的一項(xiàng)知識(shí)產(chǎn)權(quán),接著,有關(guān)科學(xué)家們根據(jù)與磁現(xiàn)象相關(guān)的各種大量的實(shí)驗(yàn),總結(jié)并提出磁通門(mén)技術(shù)的工作原理,且當(dāng)時(shí)的實(shí)驗(yàn)精度達(dá)到了納特(nT)級(jí)別。隨后各國(guó)的科學(xué)家們對(duì)與磁通門(mén)相關(guān)的技術(shù)做了進(jìn)一步的實(shí)驗(yàn)和探討研究,從而證實(shí)了磁通門(mén)技術(shù)的實(shí)用性和可發(fā)展性,在隨后的幾十年里,利用該技術(shù)制造的各種儀器得到了不斷的改進(jìn)和完善。重慶大量程電流傳感器單價(jià)平行型磁通門(mén)電流傳感器的特征為:被測(cè)磁場(chǎng)與激勵(lì)磁場(chǎng)方向平行。
高頻電力電子裝置無(wú)論是應(yīng)用于工業(yè)礦產(chǎn)中的電動(dòng)機(jī)車(chē),在風(fēng)機(jī)水泵的交流調(diào)速,還是新能源發(fā)電中的風(fēng)電并網(wǎng)轉(zhuǎn)換技術(shù)以及對(duì)多余能量的存儲(chǔ)和使用等多個(gè)方面,都需要在復(fù)雜環(huán)境下對(duì)電流進(jìn)行檢測(cè),因此對(duì)電流傳感器的溫度特性及精確度的要求較高。隨著電力電子高頻化的進(jìn)一步發(fā)展,可以在高溫環(huán)境下測(cè)量復(fù)雜電流波形的電流傳感器的研制具有很大的價(jià)值和應(yīng)用潛力。目前存在的電流檢測(cè)技術(shù)和方法有很多,根據(jù)測(cè)量方法和方式的不同,電流傳感器可分為非隔離式與電隔離式兩種。非隔離式主要是指分流電阻。電隔離式主要包括 霍爾電流傳感器(Hall-transducer),羅氏線(xiàn)圈(Rogowski Coil),電流互感器(Current transformer),磁通門(mén)電流傳感器(Fluxgate current sensor)以及巨磁阻電流傳感器(GMR current sensor )等。
電流傳感器在新能源汽車(chē)中有多個(gè)重要應(yīng)用。以下是一些常見(jiàn)的應(yīng)用: 電池管理系統(tǒng)(Battery Management System,簡(jiǎn)稱(chēng)BMS):電池是新能源汽車(chē)的重要部件之一,而電流傳感器在BMS中起著關(guān)鍵作用。它用于測(cè)量電池充電和放電過(guò)程中的電流變化,以監(jiān)測(cè)電池的狀態(tài)和保護(hù)電池免受過(guò)載和過(guò)放的損害。 電動(dòng)機(jī)控制系統(tǒng):在新能源汽車(chē)中,電動(dòng)機(jī)是用于驅(qū)動(dòng)車(chē)輛的關(guān)鍵部件。電流傳感器被用于測(cè)量電動(dòng)機(jī)的工作電流,以幫助控制電動(dòng)機(jī)的運(yùn)行狀態(tài)和保護(hù)電動(dòng)機(jī)免受過(guò)載和過(guò)熱的損害。 充電系統(tǒng):電流傳感器在新能源汽車(chē)的充電系統(tǒng)中也得到了非常多應(yīng)用。它被用于測(cè)量充電過(guò)程中的電流變化,以監(jiān)測(cè)充電狀態(tài)和確保充電過(guò)程的安全和效率。 動(dòng)力電池故障診斷:電流傳感器用于監(jiān)測(cè)動(dòng)力電池系統(tǒng)中的電流變化,以便診斷和檢測(cè)電池組件或電路的故障。通過(guò)監(jiān)測(cè)電流變化,可以及時(shí)發(fā)現(xiàn)故障并采取適當(dāng)?shù)拇胧?總的來(lái)說(shuō),電流傳感器在新能源汽車(chē)中扮演著重要的角色,幫助測(cè)量和監(jiān)測(cè)電流變化,保證電池、電動(dòng)機(jī)和充電系統(tǒng)的正常運(yùn)行,并實(shí)現(xiàn)故障診斷和保護(hù)措施。這些應(yīng)用有助于提高新能源汽車(chē)的安全性、可靠性和效率。這種誤差可能由多種因素引起,包括但不限于:溫度變化、電氣噪聲、機(jī)械磨損以及制造過(guò)程中的不準(zhǔn)確性。
誤差控制電路由PI環(huán)節(jié)構(gòu)成,其直流開(kāi)環(huán)增益越大越好,同時(shí)要求所選擇運(yùn)算放大器失調(diào)電壓小,單位增益帶寬大,選用OP27G高精密運(yùn)放。誤差控制電路輸出直接連接PA功率放大電路,以驅(qū)動(dòng)其輸出反饋電流IF。常見(jiàn)的功率放大電路包括集成功率放大電路以及三極管等功率器件搭建的A類(lèi),B類(lèi),AB類(lèi),D類(lèi),H類(lèi)功率放大電路[9,50]。在基于磁通門(mén)原理的直流電流測(cè)量的類(lèi)似方案中,為了通過(guò)降低功率放大電路的功耗以改善整個(gè)系統(tǒng)的運(yùn)行功耗,D類(lèi)功率放大電路,H類(lèi)功率放大電路常有出現(xiàn),但該類(lèi)功率放大電路輸出紋波較大,因此對(duì)反饋電流中交直流測(cè)量帶來(lái)誤差。為了減小功率放大電路環(huán)節(jié)的輸出紋波,本文選擇了傳統(tǒng)AB類(lèi)功率放大電路,其功率器件選擇TI德州儀器旗下的TIP110,TIP117,兩者器件參數(shù)一致,為互補(bǔ)對(duì)稱(chēng)的大功率達(dá)靈頓管,其大輸出交流可達(dá)2A。激勵(lì)磁場(chǎng)的瞬時(shí)值方向呈周期性變化,磁芯的磁導(dǎo)率隨激勵(lì)磁場(chǎng)的改變而變化。長(zhǎng)沙新能源電流傳感器案例
磁通門(mén)電流傳感器還具有響應(yīng)速度快、抗干擾能力強(qiáng)、可靠性高等優(yōu)點(diǎn),適用于各種復(fù)雜的環(huán)境條件下使用。珠海閉環(huán)電流傳感器
探究了交直流電流測(cè)量方法的適應(yīng)性并闡述自激振蕩磁通門(mén)傳感器適應(yīng) 于交直流電流測(cè)量的獨(dú)特優(yōu)勢(shì)。其次,通過(guò)對(duì)自激振蕩磁通門(mén)電路起振過(guò)程的分析,并應(yīng)用非線(xiàn)性鐵芯的三折線(xiàn)模型及電路理論,分析了基于自激振蕩磁通門(mén)傳感器的交直流測(cè)量原理, 在此基礎(chǔ)上探討了交直流電流下自激振蕩磁通門(mén)傳感器測(cè)量的適應(yīng)性,為設(shè)計(jì)新型交直流電流傳感器奠定理論基礎(chǔ)。后討論了自激振蕩磁通門(mén)傳感器的關(guān)鍵特性:檢測(cè)帶寬、量程、線(xiàn)性度、靈敏度及穩(wěn)定性等,為新型交直流電流傳感器的設(shè)計(jì)提供理論依據(jù)。珠海閉環(huán)電流傳感器