輸入端各個繞組與輸出端 繞組之間會相互影響,其中在輸出端產(chǎn)生的感應(yīng)紋波電流將會直接影響終測量結(jié)果, 這是單鐵芯式結(jié)構(gòu)自激振蕩磁通門傳感器閉環(huán)交直流電流測量的誤差來源之一。因此本 文設(shè)計的交直流傳感器為了抑制上述電磁感應(yīng)產(chǎn)生的噪聲, 在原有自激振蕩磁通門傳感 器基礎(chǔ)上增加環(huán)形鐵芯 C2 ,激磁繞組 W2 及反相放大器 U2 構(gòu)成雙鐵芯式自激振蕩磁通 門傳感器結(jié)構(gòu)用于解決電磁感應(yīng)噪聲問題。通過對各個鐵芯磁勢平衡方程的分析, 本文的新結(jié)構(gòu)雙鐵芯式自激振蕩磁通門傳感 器作為零磁通交直流檢測器在新型交直流電流傳感器中性能優(yōu)于原單鐵芯結(jié)構(gòu)自激振 蕩磁通門傳感器。在磁通門傳感器的設(shè)計中,通常會采用一個激勵磁場,這個磁場會持續(xù)振蕩,從而可以等效為消磁磁場。揚州新能源電流傳感器廠家現(xiàn)貨
IP<0 時激磁電壓波形 Vex 及激磁電流波形,圖中紅色曲線 為 IP=0 時激磁電流波形。為方便下一節(jié)對自激振蕩磁通門傳感器建模,將零點選擇為激磁電流達(dá)到反向充電電流 I-m 時刻,此時激磁電壓恰好發(fā)生翻轉(zhuǎn)。當(dāng)一次電流 IP<0,即為負(fù)向直流偏置,其在鐵芯 C1 中產(chǎn)生恒定的去磁直流磁通, 鐵芯 C1 磁化曲線將向右發(fā)生平移使鐵芯 C1 進入負(fù)向飽和區(qū)的閾值電流變小。 且負(fù)向飽 和閾值電流滿足 I-th1=I-th-βIp,此時新的振蕩過程將不同于原 IP=0 時自激振蕩過程,由于 負(fù)向飽和閾值電流 I-th1 小于原負(fù)向激磁閾值電流 I-th,從而導(dǎo)致負(fù)半周波自激振蕩過程將 不會在原時刻進入飽和區(qū), 而是略有提前, 即鐵芯 C1 工作點將提前進入負(fù)向飽和區(qū) C; 同時,由于負(fù)向去磁直流磁通作用,鐵芯 C1 進入正向飽和區(qū)需要額外的激磁電流以抵 消負(fù)向直流產(chǎn)生的的負(fù)向磁勢, 使得鐵芯 C1 進入正向飽和區(qū)的閾值電流變大,正向飽 和閾值電流滿足 I+th1=I+th-βIp 。濟南儲能電池測試電流傳感器廠家現(xiàn)貨功率分析儀還可以測量和分析其他與功率相關(guān)的參數(shù),例如電壓和電流的有效值、峰值、頻率等。
實際自激振蕩磁通門傳感器基于 RL自激振蕩電路完成對被測電流信號的磁調(diào)制過 程,其中使用比較器電路正反饋模式配合非線性電感完成自激振蕩過程。分析一次側(cè)電流 IP 為 0 的初始情況下,自激振蕩磁通門電路起振過程中鐵芯工 作點及激磁電流變化情況。正常工作時方波激磁電壓 Vex 波形及通過非線性電感 L 的激 磁電流 iex 波形如圖 2-3 所示, RL 多諧振蕩電路開環(huán)增益為 Av ,輸出方波電壓正向峰 值為 VOH ,反向峰值為 VOL 。假設(shè)正向激磁電流閾值 I+th ,反向激磁電流閾值 I-th ,且滿 足 I+th=-I-th=Ith 。正向充電電流 I+m ,反向充電電流 I-m ,且滿足 I+m=-I-m=Im。
加拿大學(xué)者 N.L.Kuster 、W.J.M.Moore 等,通過在交流比較儀結(jié)構(gòu)基礎(chǔ)上改進,將交流檢測模塊換為基于二次諧波磁調(diào)制器結(jié)構(gòu)的直流檢測器,設(shè)計相應(yīng)的倍頻電路及二次諧波解調(diào)電路,完成了直流比較儀研制,研制的變比為400:1 的直流比較儀比例精度在滿量程時為1ppm。歐洲核子研究中心(CENR)的 K.Unser,將磁調(diào)制器技術(shù)與磁積分器技術(shù)結(jié)合,研制出用于質(zhì)子同步器系統(tǒng)中粒子流檢測的寬頻電流互感器,該方法擴展了電流測量帶寬,但交直流測量只能單獨進行,交流通道與直流通道相互獨立。近年來,國內(nèi)在直流測量領(lǐng)域研究頗多的是華中科技大學(xué)和中國計量科學(xué)研究院,中國計量科學(xué)研究院的郭來祥對磁調(diào)制器理論研究頗深,通過應(yīng)用圖解法對三折線模型下的二次諧波式磁調(diào)制器進行了系統(tǒng)的研究,在多種激磁方法的比較中發(fā)現(xiàn)恒流方波激磁與恒壓方波激磁效果比較好,磁調(diào)制器靈敏度比較好,并對磁調(diào)制器靈敏度進行定量計算,對磁調(diào)制器基礎(chǔ)理論研究的完善做出巨大貢獻(xiàn)。在科學(xué)研究領(lǐng)域,電流測量對于探索物質(zhì)的電子行為、研究化學(xué)反應(yīng)和生物過程等方面具有重要意義。
電流精密測量研究一直以來都是計量領(lǐng)域的重點研究方向之一。測量電流基本的原理是法拉第電磁感應(yīng)原理,由此發(fā)展出電流互感器。而研究發(fā)現(xiàn)電流互感器正常工作時,需要勵磁電流對主鐵芯進行磁化,而鐵芯磁化曲線具有非線性特征,因此勵磁電流也表現(xiàn)出非線性特征。非線性勵磁電流為電流互感器誤差的根本原因。一開始基于電流互感器結(jié)構(gòu)對交流精密測量提出改進措施的是南斯拉夫尼古拉特斯拉(Insititue Nikola Tesla)研究所,其結(jié)合指零儀提出交流比較儀結(jié)構(gòu),通過外加電流源對勵磁電流進行補償,使得一二次安匝平衡,然后完成電流互感器精度的提升,其研究成果用于電流互感器的計量性能測試。1950 年之后,加拿大學(xué)者 N.L.Kuster 等,通過對原有比較儀結(jié) 構(gòu)參數(shù)進行優(yōu)化,研制出了比例精度高于0.1ppm 的交流比較儀。隨后1964 年,N.L.Kuster 和 W.J.M.Moore 在原有交流比較儀結(jié)構(gòu)的基礎(chǔ)上,將其與傳統(tǒng)電磁式電流互 感器結(jié)構(gòu)結(jié)合,提出了補償式電流比較儀概念,所研制的寬量程補償式交流比較儀在 5A 至1200A量程內(nèi),比例精度達(dá)到 5ppm。激磁電壓頻率大于一次交流頻率,因此可以將一次交流在每個極短的激磁電壓周期內(nèi),看作緩慢變化的直流信號。蘭州新能源汽車電流傳感器出廠價
近年來,又出現(xiàn)一種新的巨磁阻抗效應(yīng)傳感器。揚州新能源電流傳感器廠家現(xiàn)貨
傳統(tǒng)的電流互感器或交流比較儀,當(dāng)一次電流為交直流混合電流時,一次電流中的 直流分量并不適用于電磁感應(yīng)原理, 因此全部的直流分量用于鐵芯勵磁,致使鐵芯進入 飽和區(qū), 此時電流互感器二次側(cè)電流出現(xiàn)畸變, 導(dǎo)致一二次安匝失去平衡,交流誤差顯 著增大。非線性鐵芯材料在直流分量下均會產(chǎn)生磁飽和問題,為了實現(xiàn)交直流電流 測量, 需對一次電流中直流分量在鐵芯中產(chǎn)生的直流磁勢進行補償, 平衡鐵芯中直流磁 勢使鐵芯磁飽和問題得到解決, 此時交流比較儀部分可實現(xiàn)交流精密測量[38] 。因此,實 現(xiàn)交直流電流精密測量的關(guān)鍵就是構(gòu)建一二次交直流磁勢平衡,通過磁勢閉環(huán)實現(xiàn)主鐵 芯零磁通工作狀態(tài)。而傳統(tǒng)自激振蕩磁通門原理的電流傳感器仍屬于開環(huán)電流測量方法, 總體上電流測量精度無法達(dá)到很高, 其受電磁干擾及傳感器本身線性度影響較大, 且當(dāng) 一次電流中交直流同時存在時, 一次電流在激磁繞組產(chǎn)生感應(yīng)紋波電流, 影響了交流分 量的檢測精度。因此, 本文借鑒傳統(tǒng)電流比較儀閉環(huán)結(jié)構(gòu)及反饋環(huán)節(jié),構(gòu)建新型交直流 電流傳感器的閉環(huán)零磁通電流測量方案, 來實現(xiàn)交直流電流精密測量。揚州新能源電流傳感器廠家現(xiàn)貨