建立一種理想的腰椎間盤突出的動物模型對本病的機制研究和臨床防治具有重要意義?,F(xiàn)有模型對腰椎間盤突出癥的模擬均存在明顯不足,或與臨床實際病變部位有一定差距,如慢性坐骨神經(jīng)結(jié)扎模型;或操作難度大,對動物損傷重,如自體髓核移植模型,選擇性神經(jīng)根結(jié)扎模型。因此,急需一種新的操作簡單,重復(fù)率高,穩(wěn)定且能準確模擬腰椎間盤突出后癥狀的動物模型。技術(shù)實現(xiàn)要素:為了建立一種操作簡單,穩(wěn)定好且能準確模擬腰椎間盤突出后癥狀的動物模型,本發(fā)明提供了一種大鼠慢性背根神經(jīng)壓迫模型的制備方法。其包括以下步驟:步驟一、麻醉大鼠;步驟二、于大鼠腰4到骶1水平左側(cè)或右側(cè)作縱行切口,切開皮膚,鈍性分離椎旁肌,暴露腰4椎間孔和腰5椎間孔;步驟三、將壓迫元件插入到左側(cè)或右側(cè)腰4椎間孔及腰5椎間孔中,得到大鼠慢性背根神經(jīng)壓迫模型。其中,步驟一具體為:腹腔注射1%戊巴比妥鈉(40mg/kg)麻醉大鼠后,將大鼠背部剃毛,碘伏消毒背部皮膚,俯臥位固定于動物手術(shù)臺上,鋪無菌巾。在一個具體實施方式中,壓迫元件為l型棒;步驟三具體為:將2根l型棒的***端分別插入到左側(cè)或右側(cè)腰4椎間孔及腰5椎間孔中,l型棒的第二端置于腰4椎間孔及腰5椎間孔外。大鼠疾病建模請找上海東寰。黃浦區(qū)Balbc裸鼠疾病動物模型建模
新華社上海4月9日電(記者張建松)利用先進的基因編輯技術(shù),我國科學(xué)家在***神經(jīng)性疾病的基礎(chǔ)研究方面,取得重要進展。***在小鼠模型上,成功恢復(fù)長久性視力損傷小鼠的視力,同時還基本消除了帕金森模型小鼠的疾病癥狀。在科技部、國家自然科學(xué)基金委、中國科學(xué)院、上海市的相關(guān)項目資助下,由中國科學(xué)院腦科學(xué)與智能技術(shù)***創(chuàng)新中心(神經(jīng)科學(xué)研究所)、上海腦科學(xué)與類腦研究中心、神經(jīng)科學(xué)國家重點實驗室楊輝研究組完成的這項研究,通過基因編輯技術(shù),成功誘導(dǎo)膠質(zhì)細胞“變身”為神經(jīng)元。這為阿爾茲海默癥、帕金森癥、青光眼等眾多神經(jīng)退行性疾病的***,探索了一個新的途徑。國際**學(xué)術(shù)期刊《細胞》8日在線發(fā)表了相關(guān)研究論文。人類的神經(jīng)系統(tǒng)包含成百上千種不同類型的神經(jīng)元。在成熟的神經(jīng)系統(tǒng)中,神經(jīng)元一般不會再生,一旦死亡,就是長久性的。而神經(jīng)元的死亡,則會導(dǎo)致不同的神經(jīng)退行性疾病。在常見的神經(jīng)性疾病中,視神經(jīng)節(jié)細胞死亡導(dǎo)致的長久性失明和多巴胺神經(jīng)元死亡導(dǎo)致的帕金森癥尤為特殊,它們都是由于特殊類型的神經(jīng)元死亡所導(dǎo)致的。如何在成體中讓視神經(jīng)節(jié)細胞和多巴胺神經(jīng)元獲得再生?研究人員對小鼠模型的膠質(zhì)細胞進行了基因編輯。鎮(zhèn)江疾病動物模型建模供應(yīng)商上海東寰為您提供完善的小鼠動物疾病模型。
1、動物模型名稱:橄欖油聯(lián)合酒精致肝硬化門脈高壓大鼠模型2、實驗動物種屬:SD大鼠3、實驗動物性別:雄性4、實驗動物年齡:5周 5、實驗動物體重:150g-180g6、實驗動物環(huán)境:SPF級 1、實驗方法:橄欖油聯(lián)合酒精誘導(dǎo)。按0.3mL/100g體重,背頸部皮下注射50%CCl4的橄欖油溶液,***注射量加倍(6mL/kg體重),2次/周,皮下注射共13周;造模前4周為10%酒精溶液喂養(yǎng)代替飲水,4周后改為30%酒精溶液灌胃(30%酒精溶液灌胃1mL/100g體重,3次/周)。繼續(xù)正常飼養(yǎng)1個月。實驗結(jié)束測量門靜脈血流量(PBF)和腸系膜上動脈血流量(SMABF)。處死,取肝臟進行組織病理學(xué)檢查。2、檢測標準:門靜脈及腸系膜上動脈血流量情況與正常對照組比較均增加,差異有統(tǒng)計學(xué)意義肝組織病理可見肝硬化病理改變。
設(shè)計了一套能夠特異性標記“穆勒膠質(zhì)細胞”的系統(tǒng),再將能誘導(dǎo)神經(jīng)細胞形成的基因編輯系統(tǒng),包裝成“病毒”,注射到小鼠的視網(wǎng)膜。約1個月后,研究人員在小鼠的視網(wǎng)膜視神經(jīng)節(jié)細胞層,發(fā)現(xiàn)了由穆勒膠質(zhì)細胞轉(zhuǎn)分化而來的視神經(jīng)節(jié)細胞。這些誘導(dǎo)而來的視神經(jīng)節(jié)細胞,不僅可以對光刺激產(chǎn)生相應(yīng)的電信號,還可以和大腦中正確的腦區(qū)建立功能性聯(lián)系,將視覺信號傳輸?shù)酱竽X,成功恢復(fù)視覺功能。進一步的研究還表明,通過這一基因編輯技術(shù),還能將小鼠模型中特定區(qū)域的“星形膠質(zhì)細胞”非常高效地轉(zhuǎn)分化為多巴胺神經(jīng)元。轉(zhuǎn)分化而來的多巴胺神經(jīng)元,能將帕金森模型小鼠的運動障礙,逆轉(zhuǎn)到接近正常小鼠的水平。這項研究的負責(zé)人楊輝指出,盡管將膠質(zhì)細胞轉(zhuǎn)分化為神經(jīng)元的基因編輯技術(shù)在實驗室里取得重要進展,但要將研究成果真正應(yīng)用于人類疾病的***,還有很多工作要做。人類的視神經(jīng)節(jié)細胞能否再生?帕金森患者是否能通過該方法被***?研究人員今后將從小鼠模型轉(zhuǎn)到靈長類模型,進一步深入研究。收集研究疾病的生物學(xué)信息資料。
該模型能夠幫助我們研究pirb基因在免疫系統(tǒng)和神經(jīng)系統(tǒng)的功能以及下游的調(diào)節(jié)機制。本發(fā)明的另一目的在于提供上述小鼠動物模型的構(gòu)建方法。本發(fā)明所采用的第一種技術(shù)方案是:pirb基因敲入的小鼠動物模型,包括確定pirb基因的待敲入的特異性靶位點grna1和grna2,將pirb基因敲入c57bl/6j小鼠的rosa26基因的內(nèi)含子1內(nèi),所述grna1的基因序列如seqid**所示,grna2的基因序列如。本發(fā)明所采用的第二種技術(shù)方案為:pirb基因敲入的小鼠動物模型的構(gòu)建方法,具體按照以下步驟實施:步驟1、基于crispr/cas9技術(shù)構(gòu)建針對c57bl/6j小鼠rosa26基因的特異性grna1和grna2,grna1的基因序列如seqid**所示,grna2的基因序列如;步驟2、構(gòu)建“cagpromoter-loxp-stop-loxp-kozak-mousepirbcds-polya”基因盒打靶載體,將打靶載體進行線性化處理;步驟3、步驟2中將含有l(wèi)oxp位點打靶載體、步驟1中有活性的grna1和grna2與cas9蛋白共同注射進入**小鼠受精卵中,獲得f0代小鼠;步驟4、將步驟3中性成熟的陽性f0小鼠分別與野生型鼠交配繁一代,獲得f1代雜合子小鼠,通過pcr、測序和southern雜交確定動物基因型;步驟5、將步驟4獲得的f1代雜合子小鼠近交獲得f2代純合子小鼠。如何定義好的小鼠疾病模型?連云港視覺疾病動物模型建模
確定研究疾病目的了解影響疾病發(fā)生的內(nèi)在與外在因素。黃浦區(qū)Balbc裸鼠疾病動物模型建模
1、動物模型名稱:高脂飼料致高脂血癥大鼠模型2、實驗動物種屬:SD大鼠3、實驗動物性別:雄性4、實驗動物年齡:成年5、實驗動物體重:180~220g1、實驗方法:大鼠給予高脂飼料喂養(yǎng)20天。分別于造模前和造模20天**,測定血清中TC、TG、HDL-C、LDL-C的含量2、檢測標準:造模20天后模型組大鼠血清TC、TG、HDLC、LDLC均***增加,與對照組比較具統(tǒng)計學(xué)差異。1.提供動物模型構(gòu)建過程中的原始實驗記錄及數(shù)據(jù)圖片。2.根據(jù)要求提供構(gòu)建成功的模型動物或相關(guān)組織材料。黃浦區(qū)Balbc裸鼠疾病動物模型建模
上海東寰生物科技有限公司位于上海市嘉定區(qū)興賢路1180號5幢2樓206室,擁有一支專業(yè)的技術(shù)團隊。致力于創(chuàng)造***的產(chǎn)品與服務(wù),以誠信、敬業(yè)、進取為宗旨,以建東寰生物產(chǎn)品為目標,努力打造成為同行業(yè)中具有影響力的企業(yè)。公司不僅*提供專業(yè)的經(jīng)營范圍為:從事生物科技領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)轉(zhuǎn)讓、技術(shù)咨詢、技術(shù)服務(wù)。化工產(chǎn)品(除危險化學(xué)品、監(jiān)控化學(xué)品、煙花爆竹、民用物品、易制毒化學(xué)品)的銷售?!疽婪毥?jīng)批準的項目,經(jīng)相關(guān)部門批準后方可開展經(jīng)營活動】。,同時還建立了完善的售后服務(wù)體系,為客戶提供良好的產(chǎn)品和服務(wù)。誠實、守信是對企業(yè)的經(jīng)營要求,也是我們做人的基本準則。公司致力于打造***的原代細胞,細胞增殖與凋亡,細胞檢測試劑盒,動物疾病模型。