由此可以建立如下公式進行計算,由此即可形成更加直觀且定量的自動檢測系統(tǒng)缺陷檢出率和單車誤報的評價指標。缺陷檢出率=檢出缺陷/檢出缺陷+未檢出缺陷×100%;系統(tǒng)單車誤報=總誤報缺陷個數(shù)/總檢查車輛數(shù)量。為了進一步驗證自動檢測系統(tǒng)的檢測成效,還應(yīng)建立相應(yīng)的工作組,由規(guī)劃、質(zhì)保和涂裝車間進行有效結(jié)合,一方面保證每日生產(chǎn)線上有效落實Audit查驗車身的方式,另一方面就要在每日生產(chǎn)的過程中,進行一定數(shù)量的自動檢測系統(tǒng)車身檢驗,并將自動檢測結(jié)果與Audit檢查結(jié)果進行對照,由此獲悉檢出缺陷、未檢測出缺陷和誤報缺陷等相關(guān)的數(shù)據(jù)。此外,針對不同車身顏色的情況,還可以建立檢出率和單車誤報的統(tǒng)計表。自動檢測系統(tǒng)在檢測過程中受到顏色的影響相對較小,其檢出率與單車誤報缺陷次數(shù)相對穩(wěn)定,雖然存在個別波動情況,但總體而言并沒有出現(xiàn)較大差異,且很大程度上其差異原因在于系統(tǒng)設(shè)置的敏感性不同。在出現(xiàn)誤報缺陷的情況下,人工查看后確認無缺陷則可以不做返修處理工作。而自動檢測系統(tǒng)在批量生產(chǎn)運行過程中,還表現(xiàn)出額外的效果與優(yōu)勢,比如減少了人工勞動力,降低了人力標準,提高了生產(chǎn)的自動化效果等。在傳統(tǒng)的報交線上,工人需要負責(zé)兩方面的工作??梢栽诰€和在生產(chǎn)周期內(nèi)對ED涂層表面的所有質(zhì)量相關(guān)缺陷進行檢測和分類。包頭快速汽車面漆檢測設(shè)備推薦
既要負責(zé)對缺陷的檢測,又要在發(fā)現(xiàn)缺陷后及時進行處理,因而導(dǎo)致在檢查與處理過程中需要消耗更多的時間。與此同時,由于人工檢測還存在較多的缺陷漏檢情況,因此在正常的生產(chǎn)流程中,還容易造成二次返修缺陷的問題。但是上述情況在自動檢測系統(tǒng)應(yīng)用下可以有效避免,返修工人不需要進行檢測的工作,而只需要對缺陷進行處理即可,由此實現(xiàn)了更精細化的分工,可以實現(xiàn)降低缺陷漏檢、提升檢測質(zhì)量的目標。隨著工業(yè)科技的進一步發(fā)展,汽車涂裝生產(chǎn)技術(shù)與檢測流程也會持續(xù)升級,逐步向高智能化與全自動化發(fā)展。因此在機器視覺輔助下,汽車車身涂膜表面質(zhì)量的自動化檢測技術(shù)展現(xiàn)出重要的應(yīng)用價值,其通過機器功能代替了人工檢測的過程,不僅可以進一步防止缺陷遺漏,而且還能有效提升車身的油漆質(zhì)量,甚至還通過降低勞動強度,提升了生產(chǎn)線的自動化率,是促進汽車質(zhì)量檢測過程工作效率的重要支持,也必將成為未來車廠的重要發(fā)展趨勢。宜昌高精度汽車面漆檢測設(shè)備供應(yīng)商家我們的設(shè)備采用無接觸、高精度的檢測方案,可離線或在線自動化檢測。
該模型將每個標簽學(xué)習(xí)定義為二進制任務(wù),以應(yīng)對多標簽學(xué)習(xí)問題。,然后使用VGG網(wǎng)絡(luò)來訓(xùn)練和識別缺陷位置。還有的研究者提出了一種幀間注意策略和幀間深度卷積神經(jīng)網(wǎng)絡(luò)來檢測輸入的X射線圖像中的缺陷,從而有效地提高了檢測精度。還有的研究者提出了一種基于YOLOV2的色織疵點自動定位與分類方法。在收集了276個色織的織物缺陷圖像并進行預(yù)處理之后,使用YOLO9000,YOLO-VOC和TinyYOLO構(gòu)建了織物缺陷檢測模型。,然后將不平坦的表面劃分為潛在的缺陷區(qū)域,并使用神經(jīng)網(wǎng)絡(luò)對缺陷區(qū)域進行識別和分類。。與原來的SSD算法相比,精度有效提高。,并將CNN與mobilenetSSD結(jié)合在一起,有效地實現(xiàn)了對容器密封表面上的裂縫,凹痕,邊緣和劃痕的實時,準確檢測。盡管深度學(xué)習(xí)方法在目標檢測中表現(xiàn)出色,但它并不是特定領(lǐng)域的綜合內(nèi)容。到目前為止,關(guān)于汽車車身漆膜缺陷檢測的研究還很少。本文提出了一種改進的MobileNet-SSD的車身涂料缺陷檢測算法。首先,提出了一種數(shù)據(jù)增強方法來擴展在生產(chǎn)車間中收集的車身漆膜缺陷圖像,并改進了傳統(tǒng)SSD算法的網(wǎng)絡(luò)結(jié)構(gòu)和匹配策略。以MobileNet代替vgg16作為SSD的基本網(wǎng)絡(luò),實現(xiàn)了汽車車身漆膜缺陷的自動檢測,有效提高了檢測速度和準確性。
15s內(nèi)采集3000幀圖像,使用不同角度光線檢查車身漆面情況,數(shù)據(jù)表明此套系統(tǒng)可改善82%車身噴涂質(zhì)量和客戶滿意度。2、德國寶馬2007年寶馬Dingolfing工廠針對reflectCONTROL漆膜缺陷檢測系統(tǒng)進行測試,其視覺系統(tǒng)由一臺大屏和四臺200w相機組成,每個位置采集8幀圖像,通過4臺機器人并聯(lián)使用。終在60s節(jié)拍內(nèi)完成30個位置檢測,檢出率在98%以上(缺陷小直徑)。3、德國梅賽德斯-奔馳2007年奔馳Rastatt工廠使用ISRAVISION公司CarPaintVision系統(tǒng)進行缺陷檢測測試,每套系統(tǒng)含兩個側(cè)面機器人和一個水平面機器人,在60s節(jié)拍內(nèi)完成全車掃描,終獲得(缺陷小直徑)??偨Y(jié)基于機器視覺的自動化漆面缺陷檢測系統(tǒng),不受人工主觀性和汽車顏色等外界環(huán)境的影響,極大地提高了生產(chǎn)效率并改善了噴涂質(zhì)量。漆面好壞同樣決定著產(chǎn)品質(zhì)量及品牌形象,因此針對漆面質(zhì)量檢測也是整車出廠前的重要檢驗項。
目前汽車車身的漆面缺陷檢測主要是依賴傳統(tǒng)的人工目視檢查,因檢測效率低、檢測標準不夠客觀,并且容易受人工分心、疲勞等主觀因素的影響,越來越難以滿足工藝過程的測量和檢測要求。因此,對自動化缺陷檢測裝置的需求日益增強,這種自動化缺陷檢測裝置不僅可以嚴格地管控產(chǎn)品質(zhì)量,還能及時對產(chǎn)品缺陷進行工藝溯源,為工藝品質(zhì)改善提供數(shù)據(jù)支持。車身漆面的缺陷種類繁多,不同的生產(chǎn)廠家對缺陷的定義存在差異。從缺陷的光學(xué)成像形式可以歸類為:色差類缺陷、臟污類缺陷、紋理類缺陷、劃傷碰傷類缺陷、凹凸類缺陷。單一的2d成像方式和檢測方法難以應(yīng)對常見的缺陷,對所有缺陷同時的檢測,往往需要2d成像方式和3d成像方式相互結(jié)合。3d成像方式中激光三角法和條紋投影,是對高度的重建?;跅l紋投影原理的三維重建設(shè)備,主要應(yīng)用于漫反射物體。激光三角法可以應(yīng)用于類鏡面物體的高度測量,但是難以檢測微米級別的缺陷。3d成像方式中,光度立體法和條紋反射(相位測量偏折術(shù))是對梯度的重建。基于朗伯光照模型的光度立體法對漫反射表面的梯度重建精度較高,但很難直接應(yīng)用于鏡面物體。相位測量偏折術(shù)對鏡面物體的梯度重建精度很高,在原理上可以到達亞微米級別。 設(shè)備基于3D視覺成像原理,結(jié)合先進的圖像處理與機器學(xué)習(xí)技術(shù),快速有效的識別瑕疵,實現(xiàn)漆面實時檢測。鄭州偏折光學(xué)法汽車面漆檢測設(shè)備
基于計算機視覺的表面缺陷自動檢測作為一種快速發(fā)展的新型檢測技術(shù),具有速度快、效率高等優(yōu)點。包頭快速汽車面漆檢測設(shè)備推薦
檢測算法識別漆面缺陷的過程分以下4步:圖像采集、預(yù)處理、特征提取和分類決策.圖像采集是指通過檢測系統(tǒng)獲取到的車身不同部位漆面的圖像信息。預(yù)處理主要是指圖像處理中的灰度化處理圖像濾波、裁剪分割、形態(tài)學(xué)處理等操作.去除非必要檢測區(qū)域,加強圖像的重要特征,使缺陷特征更容易被提取出來。特征提取是指采用某種度量法則,進行缺陷特征的抽取和選擇,簡單的理解就是將圖像上的漆面缺陷與正常漆面,利用某種方法將它們區(qū)分。分類決策是指構(gòu)建某種識別規(guī)則,通過此識別規(guī)則可以將對應(yīng)的特征進行歸類和判定,主要應(yīng)用手漆面缺陷的分類.以指導(dǎo)后續(xù)的打磨拋光操作。目前,常用的漆面缺陷檢測算法主要分為2類:傳統(tǒng)圖像算法和深度學(xué)習(xí)算法。這2種算法的主要區(qū)別在于特征提取和分類決策的差異。包頭快速汽車面漆檢測設(shè)備推薦
領(lǐng)先光學(xué)技術(shù)(江蘇)有限公司成立于2019年,公司總部地址位于武進區(qū)天安數(shù)碼城內(nèi)獨棟12-2#寫字樓。我們的種子企業(yè)“l(fā)ing先光學(xué)技術(shù)(常熟)有限公司”成立于2014年,是國家高新技術(shù)企業(yè)、科技型中小型企業(yè)、江蘇省民營科技企業(yè)、雛鷹企業(yè)。知識產(chǎn)權(quán)80余項(發(fā)明專利8項)。內(nèi)核團隊:教授2名、博士2名、行業(yè)渠道關(guān)鍵人4人。長期穩(wěn)定與復(fù)旦大學(xué)、大連理工大學(xué)合作。底層技術(shù)包括:光學(xué)(相位偏折、白光干涉、白光共焦、深度學(xué)習(xí));MicroLED(發(fā)光器件、透明顯示、微型投影)。是做一件“利用光學(xué)進行工業(yè)質(zhì)量檢測設(shè)備的生產(chǎn)和制造”。自主開發(fā)光學(xué)系統(tǒng)和底層內(nèi)核算法,擁有十年以上行業(yè)經(jīng)驗,主要應(yīng)用于:汽車玻璃檢測行業(yè)、片材檢測行業(yè)、半導(dǎo)體材料檢測行業(yè),我們的戰(zhàn)略新產(chǎn)品:微米級光刻機已經(jīng)完成版流片,也正在一步步趨于穩(wěn)定和成熟。公司在科技的浪潮中,已經(jīng)具有將內(nèi)核技術(shù)轉(zhuǎn)化為產(chǎn)品的經(jīng)驗與能力。公司是高科技、高成長性企業(yè),公司不斷的夯實自身技術(shù)基礎(chǔ),愿成為中國工業(yè)發(fā)展中奠基石的一份子,打破國外的智能裝備的,樹名族自有高技術(shù)品牌。