在體光纖成像記錄,指的是利用光學(xué)的探測(cè)手段結(jié)合光學(xué)探測(cè)分子對(duì)細(xì)胞或者組織甚至生物體進(jìn)行成像,來獲得其中的生物學(xué)信息的方法。傳統(tǒng)的動(dòng)物實(shí)驗(yàn)方法需要在不同的時(shí)間點(diǎn)處死實(shí)驗(yàn)動(dòng)物,以獲得多個(gè)時(shí)間點(diǎn)的實(shí)驗(yàn)數(shù)據(jù)。而在體光纖成像記錄則可以對(duì)同一觀察目標(biāo)進(jìn)行連續(xù)的查看并記錄其變化,從而達(dá)到簡化實(shí)驗(yàn)的目的。光在體內(nèi)組織中傳播時(shí)會(huì)被散射和吸收,血紅蛋白吸收可見光中藍(lán)綠光波段的大部分,但是波長大于600nm的紅光波段無法被其吸收,可以穿過組織和皮膚被檢測(cè)到。在相同的深度情況下,檢測(cè)到的發(fā)光強(qiáng)度和細(xì)胞數(shù)量具有線性關(guān)系。光源的發(fā)光強(qiáng)度隨深度增加而衰減,血液豐富的組織/系統(tǒng)衰減多,與骨骼相鄰的組織/系統(tǒng)衰減少。用成熟的在體光纖成像記錄進(jìn)行體外檢測(cè)。廣州腦立體定位光纖成像記錄原理
在體光纖成像記錄的應(yīng)用,揭示機(jī)體的生理病理改變過程,目前, 在體生物光學(xué)成像技術(shù)己成功應(yīng)用于 干細(xì)胞移植、 壞掉的免疫、 毒血癥、 風(fēng)濕性關(guān)節(jié)炎、 皮炎等發(fā)病機(jī)制的研究中, 可以實(shí)時(shí)監(jiān)測(cè)生物機(jī)體的生理、病理改變過程, 具有重要的臨床意義。藥物的篩選和評(píng)價(jià)的應(yīng)用目前 , 轉(zhuǎn)基因動(dòng)物模型己大量應(yīng)用于病理研究、藥物研發(fā)、 藥物篩選和藥物評(píng)價(jià)等領(lǐng)域。通過體外基因轉(zhuǎn)染或直接注射等手段, 將熒光素酶或綠色熒光蛋 自等報(bào)告基因標(biāo)記在生物體內(nèi)的任何細(xì)胞, 如:壞掉的細(xì)胞、 造血細(xì)胞等上, 采用在體生物光學(xué)成像技術(shù)對(duì)其示蹤, 了解細(xì)胞在生物體內(nèi)的轉(zhuǎn)移規(guī)律,不單能夠檢測(cè)轉(zhuǎn)基因動(dòng)物體 內(nèi)的基因表達(dá)或 內(nèi)源性基因的活性和功能, 而且能夠?qū)λ幬锖Y選及療效進(jìn)行評(píng)價(jià)。金華蛋白病毒影像光纖在體光纖成像記錄為一項(xiàng)新興的分子、 基因表達(dá)的分析 檢測(cè)技術(shù)。
動(dòng)物體內(nèi)很多物質(zhì)在受到激發(fā)光激發(fā)后,會(huì)發(fā)出熒光,產(chǎn)生的非特異性熒光會(huì)影響到檢測(cè)靈敏度。背景熒光主要是來源于皮毛和血液的自發(fā)熒光,皮毛中的黑色素是皮毛中主要的自發(fā)熒光源,其發(fā)光光線波長峰值在 500 一 520 nm 左右,在利用綠色熒光作為成像對(duì)象時(shí),影響較為嚴(yán)重,產(chǎn)生的非特異性熒光會(huì)影響到檢測(cè)靈敏度和特異性。動(dòng)物尿液或其他雜質(zhì)如沒有及時(shí)打掃,成像中也會(huì)出現(xiàn)非特異性信號(hào)。由于各廠商的圖像分析軟件不同,實(shí)驗(yàn)數(shù)據(jù)分析方法也有區(qū)別?;畹奈矬w成像系統(tǒng)使用時(shí),實(shí)驗(yàn)者考慮到非特異性雜信號(hào),以及成像圖片美觀等方面,可能會(huì)調(diào)節(jié)信號(hào)的閾值,因此在在體光纖成像記錄分析信號(hào)光子數(shù)或信號(hào)面積時(shí),應(yīng)考慮閾值的改變對(duì)實(shí)驗(yàn)結(jié)果的影響。正確選擇 ROI 區(qū)域,可提高分析實(shí)驗(yàn)數(shù)據(jù)的準(zhǔn)確性。
對(duì)生物體內(nèi)的突觸結(jié)構(gòu)和蛋白進(jìn)行空間分布的研究時(shí),成像系統(tǒng)需要具備高的成像速度,防止出現(xiàn)生物體移動(dòng)造成的重影現(xiàn)象;成像的超高動(dòng)態(tài)范圍和熒光信號(hào)的超高線性度:像的熒光強(qiáng)度計(jì)數(shù)需要具有對(duì)的的統(tǒng)計(jì)學(xué)意義證明實(shí)驗(yàn)結(jié)論的正確性,因此圖像的熒光強(qiáng)度值必須能夠精確反映體內(nèi)蛋白、基因濃度的高低,這需要檢測(cè)器具有超高的動(dòng)態(tài)范圍能夠同時(shí)記錄強(qiáng)信號(hào)和弱信號(hào),并且在此動(dòng)態(tài)范圍內(nèi)圖像計(jì)數(shù)值與真實(shí)的熒光信號(hào)對(duì)的線性變化以正確反映蛋白、基因的濃度。在體光纖成像記錄硬件也有助于保證較高的成像質(zhì)量。
在體光纖成像記錄增大視場(chǎng)可以提高成像光譜儀的工作效率,大視場(chǎng)寬覆蓋是下一代成像光譜儀的發(fā)展趨勢(shì)。視場(chǎng)增大通常會(huì)導(dǎo)致遙感器質(zhì)量和體積的增加,如何在獲得大視場(chǎng)的同時(shí)具有小型化與輕量化的結(jié)構(gòu)是每個(gè)成像光譜儀設(shè)計(jì)者應(yīng)該權(quán)衡的問題。為了突破成像光譜儀質(zhì)量與體積對(duì)視場(chǎng)的限制,提出使用光纖傳像束代替色散型成像光譜儀中的狹縫來鏈接望遠(yuǎn)鏡和光譜儀組成光纖成像光譜儀。利用線列光纖傳像束柔軟可拆分的特點(diǎn),將望遠(yuǎn)鏡的線性大視場(chǎng)拆分為若干個(gè)小視場(chǎng),將它們折疊分離放置于光譜儀物面上,經(jīng)過光譜儀分光成像至同一焦平面上。在體光纖成像記錄幾乎不會(huì)對(duì)組織造成傷害。湖州神經(jīng)元影像光纖
有關(guān)生命活動(dòng)的小分子在體光纖成像記錄等都可以被標(biāo)記。廣州腦立體定位光纖成像記錄原理
在體光纖成像記錄相干斷層掃描的局限性是單能掃描生物組織表面下1-2毫米的深度。這是由于深度越大,光線無散射的射出表面的比例就越小,以至于無法檢測(cè)到。但是在檢測(cè)過程中不需要樣品制備過程,成像過程也不需要接觸被成像的組織。更重要的是,設(shè)備產(chǎn)生的激光是對(duì)人眼安全的近紅外線,因此幾乎不會(huì)對(duì)組織造成傷害。使用光學(xué)反向散射或后向反射的測(cè)量成像組織的內(nèi)部橫截面微結(jié)構(gòu),像在體外在人的視網(wǎng)膜上,并在一個(gè)其他的病因斑塊在透明,弱散射介質(zhì)和不透明的。廣州腦立體定位光纖成像記錄原理