在體光纖成像記錄在自由活動動物的深部腦區(qū)實現(xiàn)光信號記錄和神經(jīng)細胞活性調(diào)控;高質(zhì)量,亞細胞分辨率的成像;多波長成像,實現(xiàn)較多的鈣離子成像(GCaMP or RCaMP),和光遺傳實驗,特定目標光刺激;在體光纖成像系統(tǒng)是模塊化設計,使用者擁有很高的靈活性,可以隨時根據(jù)研究需要對系統(tǒng)進行調(diào)整,比如調(diào)整光源,波長,濾光片,相機等。在深部腦區(qū)選定的特定神經(jīng)細胞或部分獲得連續(xù)的實驗數(shù)據(jù)流,然后對單細胞提取密度軌跡。鈣離子成像軌跡也可以被同步,與其他行為學實驗(攝像拍攝,獎勵設備等)同步時間標記。用成熟的在體光纖成像記錄進行體外檢測。上海在體實時單光纖成像技術
在體光纖成像記錄系統(tǒng)在成像速度和分辨率方面還存很多不足。在成像系統(tǒng)的傳輸矩陣測試階段,必須采用SLM 實現(xiàn)相位調(diào)制,而SLM 器件的響應速度比較低,幀率只能達到幾百赫茲,一些特殊的器件可以達到20 kHz,但對于像素為100pixel×100pixel的成像區(qū)域進行逐點成像,成像速率只能達到2 frame/s,在實際應用中有很大的局限性。SLM 器件的光效率較低,體積較大,不利于系統(tǒng)集成和結構微型化。單光纖成像系統(tǒng)需要預先測定光纖的傳輸特性(即光纖傳輸矩陣),而傳輸矩陣會受光纖形態(tài)(如彎曲、壓力和溫度)的影響。如果光纖在使用過程中受到外界的擾動,那么傳輸矩陣會發(fā)生變化,對成像產(chǎn)生較大影響。上海在體實時單光纖成像技術在體光纖成像記錄探測從小動物體內(nèi)系統(tǒng)。
在體光纖成像記錄的應用,揭示機體的生理病理改變過程,目前, 在體生物光學成像技術己成功應用于 干細胞移植、 壞掉的免疫、 毒血癥、 風濕性關節(jié)炎、 皮炎等發(fā)病機制的研究中, 可以實時監(jiān)測生物機體的生理、病理改變過程, 具有重要的臨床意義。藥物的篩選和評價的應用目前 , 轉基因動物模型己大量應用于病理研究、藥物研發(fā)、 藥物篩選和藥物評價等領域。通過體外基因轉染或直接注射等手段, 將熒光素酶或綠色熒光蛋 自等報告基因標記在生物體內(nèi)的任何細胞, 如:壞掉的細胞、 造血細胞等上, 采用在體生物光學成像技術對其示蹤, 了解細胞在生物體內(nèi)的轉移規(guī)律,不單能夠檢測轉基因動物體 內(nèi)的基因表達或 內(nèi)源性基因的活性和功能, 而且能夠對藥物篩選及療效進行評價。
在體光纖成像記錄相干斷層掃描的局限性是單能掃描生物組織表面下1-2毫米的深度。這是由于深度越大,光線無散射的射出表面的比例就越小,以至于無法檢測到。但是在檢測過程中不需要樣品制備過程,成像過程也不需要接觸被成像的組織。更重要的是,設備產(chǎn)生的激光是對人眼安全的近紅外線,因此幾乎不會對組織造成傷害。使用光學反向散射或后向反射的測量成像組織的內(nèi)部橫截面微結構,像在體外在人的視網(wǎng)膜上,并在一個其他的病因斑塊在透明,弱散射介質(zhì)和不透明的。醫(yī)生可以在體光纖成像記錄直觀地進行診斷和分析。
在體光纖成像記錄是基于多模光纖的微弱熒光信號檢測和記錄系統(tǒng),該系統(tǒng)能夠長時間穩(wěn)定的激發(fā)熒光,并檢測熒光信號的微弱變化。用于在體記錄動物群體神經(jīng)元活動鈣信號的動態(tài)變化,在腦功能研究中具有較多的用途,其具體特點和應用如下:1、儀器高度集成化,只需一臺儀器,配合光纖記錄系統(tǒng)電腦端軟件則可以進行實時的記錄及數(shù)據(jù)分析,實驗簡單便捷,實驗前無需調(diào)試設備;2、儀器穩(wěn)定性及可移動性強,較高有4通道版本,可同時記錄4只動物或一只動物4個位點。較高采樣率達20000 HZ,信噪比高。3、所有傳輸光路通過光纖耦合,具有很強的抗干擾能力,同時不受外界光纖干擾。在體光纖成像記錄使用者擁有很高的靈活性。上海鈣熒光指示蛋白病毒光纖成像記錄技術服務公司
在體光纖成像記錄釋放的光子可被跟閃爍晶體相連的光電倍增管檢測到。上海在體實時單光纖成像技術
在體光纖成像記錄能夠同時測量多個光纖源的光偏振態(tài),開啟了在許多應用中通過控制偏振態(tài)創(chuàng)造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個相同性質(zhì)激光束產(chǎn)生高密度局部化光束的無透鏡成像。偏振是實現(xiàn)高的度激光束控制的關鍵特性之一。此外,在光學成像的應用中,基于多芯光纖的內(nèi)窺鏡在使用中必須彎曲和移動。對每個光纖的光偏振態(tài)的實時監(jiān)測將使科學家能夠控制并精確光纖激光束,以實現(xiàn)高分辨率圖像。在這項研究中,研究人員將這兩種技術應用于兩種類型的多芯光纖:保偏多芯光纖和由475個光纖芯組成的傳統(tǒng)光纖束。上海在體實時單光纖成像技術