生物降解,由于釋放到環(huán)境中的表面活性劑的體積,它們的生物降解是非常令人感興趣的。促進降解的策略包括臭氧處理和生物降解。兩種主要的表面活性劑,直鏈烷基苯磺酸鹽(LAS)和烷基酚聚氧乙烯醚(APE)在污水處理廠和土壤中發(fā)現(xiàn)的需氧條件下分解為壬基酚,這被認為是一種內(nèi)分泌干擾物。對生物可降解表面活性劑的興趣引起了對“生物表面活性劑”的極大興趣,例如從氨基酸中提取的那些。備受關注的是含氟表面活性劑的非生物降解性,例如全氟辛酸(PFOA)。表面活性劑可以用于制備食品添加劑,例如乳化劑和穩(wěn)定劑。深圳工業(yè)表面活性劑廠家
Chanwattanakit等以棕櫚酸甲酯(熔點約30 ℃)為模擬污垢,研究了C12,13P4S對其洗滌效果的影響,并探討了相應機理。研究結果表明,水溫高于棕櫚酸甲酯熔點時,較大去污率對應于較低動態(tài)IFT,液體油污的卷曲為主要去污機理;低于熔點時,表面活性劑水溶液在油污上的接觸角越小,去污率越高,表面活性劑分子通過潤濕、滲透分解油污成固體小顆粒而將其去除。低于熔點,固體油污與固體顆粒污垢不同,靜電斥力不是去污的驅動力,主要與表面活性劑的潤濕、分散能力相關。三次采油在三次采油中,IFT是一項重要的指標,通常要求IFT要達到較低。前面提到,該類表面活性劑與多種油可以達到較低IFT,因此在三次采油中具有普遍的應用前景。深圳工業(yè)表面活性劑廠家表面活性劑可以被用于清潔油污、污漬等。
中文名表面活性劑外文名surfactant別名:表面活性物質應用學科,化學分類:離子型表面活性劑(包括陽離子表面活性劑與陰離子表面活性劑)、非離子型表面活性劑、兩性表面活性劑、復配表面活性劑、其他表面活性劑等特 性兩親性作 用降低目標溶液的表面張力。濁點Minana等測定了C12PmE2S(m=6、10、14)表面活性劑水溶液(質量分數(shù)為10%)的濁點。結果表明,濁點隨著PO基團的增加而下降,平均每增加1個PO基團,濁點下降約10 ℃,這與PO基團具有疏水性相一致。
起源歷史:①公元前2500年——1850年羊油和草木灰制造肥皂羊油——三羧酸酯簡稱三甘酯,經(jīng)堿水解→羧酸鹽+單甘酯+二甘酯+甘油,19世紀中葉,一方面肥皂開始實現(xiàn)工業(yè)化大生產(chǎn),另一方面,也出現(xiàn)了化學合成的表面活性劑。②土耳其紅油的出現(xiàn):土耳其紅油即蓖麻油與硫酸反應的產(chǎn)物,蓖麻油為蓖麻油酸的三甘酯,深度磺化,耐酸耐硬水;③19世紀初,礦物原料制備洗滌劑,石油工業(yè)的發(fā)展→石油硫酸(綠油)。蠟和茶的磺化混合物,溶于酸中,呈綠黑色,用堿中和制得。石油磺酸皂具有良好的水溶性,稱綠鈉(頭一個礦物原料制得的洗滌劑)。頭一次世界大戰(zhàn)期間,油脂出現(xiàn),煤炭產(chǎn)量→煤化工業(yè)發(fā)→短鏈烷基、奈磺酸鹽類表面活性劑,如丙基奈磺酸鹽、丁基奈磺酸鹽。石油化工產(chǎn)品中也含有表面活性劑。
1920-1930脂肪醇硫酸化→烷基硫酸鹽。20世紀30年代,長鏈烷基、苯基出現(xiàn)于美國。頭一次世界大戰(zhàn)后,德國開發(fā)乙二醇衍生物,如聚乙二醇 衍生物產(chǎn)品,聚乙二醇與各種有機化合物(包括醇、酸、酯、胺、酰胺)等結合,形成多種優(yōu)良性能的非離子表面活性劑。表面活性劑和合成洗滌劑形成一門工業(yè)得追溯到20世紀30年代,以石油化工原料衍生的合成表面活性劑和洗滌劑打破了肥皂一統(tǒng)天下的局面。經(jīng)過60余年的發(fā)展,1995年世界洗滌劑總產(chǎn)量達到4300萬噸,其中肥皂900萬噸。據(jù)**預測,全世界人口從2000年到2050年將翻一番,洗滌劑總量將從5000萬噸增加到12000萬噸,凈增1.4倍,這是一個令人鼓舞的數(shù)字。表面活性劑可以用于制備人造細胞膜,用于藥物篩選和生物學研究。天津陰離子表面活性劑供應
表面活性劑可以用于制備柔軟劑,使衣物更加柔軟。深圳工業(yè)表面活性劑廠家
為解決C14,15P8S泡沫穩(wěn)定性差的問題,Watcharasing等采用膠質氣體泡沫對柴油分離進行了研究。膠質氣體泡沫(colloidal gas aphron, GGA)是由表面活性劑水溶液在高速攪拌下生成的氣液膠體分散體系,類似于普通泡沫,但又有很大差異,具有兩個特點:粒徑在10~100 μm,比普通泡沫小,屬于微氣泡;比表面積大,含氣率高,顯示出部分膠體特性。利用膠質氣體泡沫進行泡沫分離,效率高、成本低,是一項極具前景的分離技術。利用C14,15P5S制備GGA,在較佳條件下,生成的GGA對柴油去除率可達97%。深圳工業(yè)表面活性劑廠家